Abstract
A momentum backpropagation neural network is prepared to carry out real-time dynamics simulations of a passenger car. A full-car model of fifteen degrees of freedom was constructed for vehicle dynamics analysis. Human body dynamics analysis was performed for a male driver(50 percentile Korean adult) restrained by a three point seatbelt system. The trained data using the neural network were obtained using a dynamic solver, ADAMS . The neural network were formed based on the dynamics of the simulator. The optimized hidden layer was obtained by selecting the optimal number of hidden layers. The driving scenario including bump passing and lane changing has been used for the estimation of the proposed neural network. A comparison between the trained data and neural network outputs is found to be satisfactory to show the applicability of the suggested approach.