DOI QR코드

DOI QR Code

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type and Their Performance Comparison

유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 성능평가에 관한 연구

  • 홍원표 (한밭대학교 건축설비공학과) ;
  • 김용학 (한밭대학교 건축설비공학과)
  • Published : 2002.05.01

Abstract

The maximun short circuit current of modern power system is becoming so large that circuit breaker is not expected to be able to shut down the current in the future In order cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for furture power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system. The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element (resistor or reactor). from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparision characteristics for two type SFCL. Desired design specification and operation parameters of SECL were also given qualitatively by the performance.

본 논문은 전력설비에 조기적용이 예상되는 초전도한류기의 파라메타를 정의하고 앞으로 개발방향을 제시하기 위하여 한류기의 동작원리, 특성 및 계통조기적용가능성들을 근거로 파라메타의 특성을 비교 ·평가하였다. 또한 한류기의 계통적용효과를 분석하기 위하여 SFCL이 기간 특고압 모델계통에 도입한 경우를 상정하여 3선지락 고장에서 저항형과 유도형 SFCL의 도입 효과에 대하여 RTDS (Real Time Digital Simulation)/EMTDC(Electromagnetic Transient DC)로 시뮬레이션하였다. 특히 저항형과 유도형의 한류효과의 비교 평가, 모선전압의 저하 억제 및 계통과 한류기의 파라메타와의 관련성에 대하여 검토하였다.

Keywords

References

  1. Young-Sun, Kim et al., “Investigation for Installing 345kV Serial Reactor for Limiting Fault Current of Transmission Power System”, Electric Journal, pp.37-45, 2000, 9.
  2. S. Sugimoto et al., “Principle and Characteristics of a fault Current Limiter with Series Compensation”, IEEE Trans. on Power Delivery, Vol. 11, No. 2, pp. 842-847, 1996. https://doi.org/10.1109/61.489342
  3. P. G Slade et al., “The Utility Requirements for a Distribution Fault Current Limiter”, IEEE Trans. on Power Delivery, Vol. 7, No. 2, pp. 507-515, 1992. https://doi.org/10.1109/61.127043
  4. Technoba, “The Study of Total System for Development of Applied Superconductivity Technology”, 1994 New Sunshine Planning Report, 1995.
  5. E.Lung et al., “Design & Development of a 15kV, 20 kA HTS fault Current Limiter”, IEEE Trans. on Applied Superconductivity, Vol. 10, No. 1, pp. 832-835, 2000. https://doi.org/10.1109/77.828360
  6. E.M Lung, “Superconducting Fault Current Limiter”, IEEE power Engineering Review, pp 15-30, August 2000.
  7. H. Kameda et al., “Setting Method of Specific Parameter of a Superconducting Fault Current limiter Considering the Operation of Power System protection”, IEEE Teans. on Applied Superconductivity, Vol. 9, No. 2, pp. 1355-1360, 1999. https://doi.org/10.1109/77.783554
  8. L. Salasoo et al., “Comparison of Superconducting Fault Limiter concepts in Electric Utility Application”, IEEE Trans. on Applied Superconductivity, Vol. 5, No. 2, pp 1079 - 1082, June 1995. https://doi.org/10.1109/77.402739
  9. B.Dutoit et al., “A Nonlinear Model of Silver Sheathed Bi(2223) High Temperature Superconducting Tape”, IEEE Trans. on Applied Superconductivity, Vol. 7, No. 2, pp 294-297, 1997. https://doi.org/10.1109/77.614488
  10. R.A Weller et al., “Computer Modelling of Superconducting Film Type Fault Current Limiters”, IEEE Tans. on Applied Superconductivity, Vol. 9, No. 2, pp.1377-1380, 1999. https://doi.org/10.1109/77.783559
  11. T Ise et al., “Reduction of influence and Current Rating of the Coil and Enhancement of fault Current Limiting Capacity of a Rectifier Type Superconducting Fault Current Limiter”, IEEE Tans. on Applied Superconductivity, Vol. 11, No. 1, pp.1377-1380, 1999.
  12. T. Satoh et al., “Three-Phase Fault Current Limiter with One DC S/N Transition Element”, IEEE Trans. AS, Vol. 11, No. 1, pp 2398-2401, 2001.
  13. P. Tixador, “Superconducting Current Limiters-Some Comparison and Influential Parameters”, Principle and Previous Studies", IEEE Trans. AS, Vol. 4, No. 4, pp. 190-197.2001.
  14. T. Matsumura et al., “Design Guideline of Flux-Lock Type HTS Fault Current limiter for Power System Application”, IEEE Trans. AS, Vol. 11, No. 1, pp. 1956-1959, 2001.
  15. T. Hoshino et al., “Recovery Time of Superconducting Non-Inductive Reactor Type Fault Current Limiter”, IEEE Trans. on Magnetics, Vol. 32, No. 4, pp.2403-2406, 1996. https://doi.org/10.1109/20.511357
  16. N. Hayakawa et al., “A System Study on Superconducting Fault Current Limiting Transformer (SFCLT) with the Function of Fault Current Suppression and System Stability Improvement”, IEEE Trans. AS, Vol. 11, No. 1, pp. 1936-1939, 2001.
  17. M. Yamaguchi et al., “A Study on One DC Reactor Type Three-Phase Current Limiter”, T. IEE Japan, Vol. 119-B, No. 11, pp. 1166-1173, 1999.
  18. L.S. Fleishman et al., “Design Consideration an Inductive High Tc Superconducting Fault Current Limiter”, IEEE Trans. AS, Vol. 3, No. 1, pp. 570-573, 1993.
  19. V.D Pham et al., “Toward the SFCL”, IEEE Trans. on Power Delivery, Vol. 6, No.2, pp. 801-808, 1991. https://doi.org/10.1109/61.131138
  20. T. Hara et al., “Development of A New 6.6kV/1500A Class SFCL”, IEEE Trans. on Power Delivery, Vol. 8, No.1, pp. 182-190, 1993. https://doi.org/10.1109/61.180335
  21. M. Yamaguchi et al., “Performance od DC Reactor Type Fault Current Limiter Using High Temperature Superconducting Coil”, IEEE Trans. AS, Vol. 9, No. 2, pp. 940-943, 1999.