A SYMMETRIC MINIMAL COMPLEMENT AT INFINITY FOR A GIVEN SYLVESTER DATA SET IN THE COMPLEX PLANE

  • Kim, Jeon-Gook (Department of Mathematics, Chonnam National University)
  • Published : 2002.05.01

Abstract

A symmetric minimal complement at infinity for a given symmetric Silvester data set in the complex plane is contructed.

Keywords

References

  1. Interpolation of Rational Matrix Functions, Birkhauser OT 45 J.A.Ball;I.Gohberg;L.Rodman
  2. Linear Alg. and Appl. v.203/204 Column reduced rational matrix functions with given null-pole data in the complex plane J.A.Ball;M.A.Kaashoek;G.Groenewald;J.Kim
  3. Linear Alg. and Appl. v.241-243 Bitangential interpolation problems for symmetric rational matrix functions J.A.Ball;J.Kim
  4. Topics in Interpolation Theory of Rational Matrix-valued Functions, Birkhauser OT 33 I.Gohberg;M.A.Kaashoek;A.C.M.Ran;I.Gohberg(ed.)
  5. Linear Alg. and Appl. v.137/138 Regular rational matrix functions with prescribed null and pole data except at infinty I.Gohberg;M.A.Kaashoek;A.C.M.Ran