ON APPROXIMATION PROPERTIES OF BALAZS-SZABADOS OPERATORS AND THEIR KANTOROVICH EXTENSION

  • Agratini, Octavian (Faculty of Mathematics and Compuster Science, ″Babes-Bolyai″University)
  • Published : 2002.05.01

Abstract

In this paper we deal with a sequence of positive linear operators ${{R_n}}^{[$\beta$]}$ approximating functions on the unbounded interval [0, $\infty$] which were firstly used by K. balazs and J. Szabados. We give pointwise estimates in the framework of polynomial weighted function spaces. Also we establish a Voronovskaja type theorem in the same weighted spaces for ${{K_n}}^{[$\beta$]}$ operators, representing the integral generalization in Kantorovich sense of the ${{R_n}}^{[$\beta$]}$.

Keywords

References

  1. Acta Sci. Math. v.66 Asymptotic approximation by the operators of K. Balazs and Szabados U. Abel;B. Della Vecchia
  2. National Bureau of Standards Applied Mathematics Series v.55 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables M. Abramowitz;I. A. Stegun
  3. Mathematical Notes(Miskolc) v.2 no.1 An approximation process of Kantorovich type O. Agratini
  4. Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl v.40 On a new sequence of positive linear operators on unbounded intervals F. Altomare;I. Carbone
  5. Acta Math. Acad. Sci. Hungar v.26 no.1-2 Approximation by Bernstein type rational functions K. Balazs
  6. Acta Math. Acad. Sci. Hungar v.40 Approximation by Bernstein type rational functions. II C. Balazs;J. Szabados
  7. Indiana Univ. Math. J. v.27 no.1 Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces M. Becker
  8. Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl v.52 Approximation properties of some sequences of positive linear operators on weighted function spaces I. Carbone
  9. Facta Universitatis(Nis) v.4 On some preservation and asymptotic relations of a rational operator B. Della Vecchia
  10. Indagationes Mathematicae v.32 no.4 On some linear positive operators P. C. Sikkema
  11. Acta Math. Hung v.43 no.3-4 Saturation for Bernstein type rational functions V. Totik