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Strong Law of Large Numbers for Tight
Fuzzy Random Variables!

Sang Yeol Joo!

ABSTRACT

In this paper, we obtain a strong law of large numbers for convex tight
random elements taking values in the space of fuzzy numbers in R.

Keywords: Fuzzy random variables, strong law of large numbers, convex tight-
ness.

1. Introduction

In recent years, limit theorems for sums of fuzzy random variables have re-
ceived much attentions because of its usefulness in several applied fields. Among
others, strong laws of large numbers for independent fuzzy random variables have
been studied by Klement et al. [12], Inoue [6], Molchanov [13], Kim [10], Joo and
Kim [8], and so on. Joo and Kim (7] introduced a new metric d, on the space
F(R) of fuzzy numbers in R so that #(R) is separable and topologically complete
and Ghil et al. [4] characterized compact subsets of F(R). These results were
used to study a strong law of large numbers for stationary fuzzy random variables
by Joo et al. [9]. Also, Kim [11] proved that a fuzzy mapping is measurable if and
only if it is measurable when considered as a function into the metric space F(R)
endowed with the metric d;. Thus it is natural that we ask whether strong laws
of large numbers for fuzzy random variables can also be obtained with respect to
the metric d;.

In this paper, motivated by the works of Joo and Kim [7], we establish a
strong law of large numbers for convex tight fuzzy random variables. Section 2
is devoted to describe some preliminary results and the main results are given in
Section 3.
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2. Preliminary Results

Let R denote the real line. A fuzzy number is a fuzzy set % : R — [0,1] with
the following properties :

(1) @ is normal, i.e., there exists z € R such that a(z) = 1.

(2) 4 is upper semi-continuous.

(3) s =cl{z € R : 4(z) > 0} is compact.

(4) @ is a convex fuzzy set, i.e., t(Az + (1 — AN)y) > min(d(z), d(y)) for z,y € R

and X € [0,1].

We denote the family of all fuzzy numbers by F(R). For a fuzzy set 4, the a-
level set of @ is defined by

T U <
Laﬂ:{{x. Ex)Za}, 0<a<l,
supp U a=0.

Then it follows that @ is fuzzy number if and only if L14 # ¢ and L,u is &
closed bounded interval for each a € [0,1]. From this characterization of fuzzy

numbers, a fuzzy number 4 is completely determined by the end points of the

intervals Lo = [ul, u?].

Theorem 2.1. For @ € F(R), we denote u'(a) = ul and v*(a) = u2 by con-
sidering as a function of a € [0,1]. Then the followings hold.

(1) ul(a) is a bounded increasing function on [0,1].

(2) u2(a) is a bounded decreasing function on [0,1].

(3) u!(1) < w?(1).

(4) ul(a) and u?() are left continuous on (0,1] and right continuous at 0.

(5) If v}(a) and v%(a) satisfy the above (1)-(4), then there exists a unique ¥ €
F(R) such that Lo = [v!(a),v%(a)] for all a € [0,1].

Proof. See Theorem 1.1 of Goetschel and Voxman [5]. O
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The above theorem implies that we can identify a fuzzy number @ with the
parametrized representation {(ul,u2)| 0 < a < 1}, where u! and u? satisfy (1)-
(4) of Theorem 2.1. Suppose now that 4,7 € F (R) are fuzzy numbers whose
representations are {(u},42)] 0 < o < 1} and {(v},v2)| 0 < a < 1}, respectively.
If we define

where 0 = I10y is the indicator function of {0}, then
a+9 = {(ul +0l, B2 +02)|0<a<1},

NG = {Qul,2) | 0<a<1}, A>0,
T {Owd ) | 0<a<1), A<o.

Now, we define the metric do, on F(R) by

doo(@,0) = sup h(LqG, La0), (2.1)
0<a<l1

where h is the Hausdorff metric defined as
h(Lqfi, La®) = max(|ug ~ v, [u3 — v2))-
Also, the norm |||} of fuzzy number @ will be defined as
]| = doo (@, 0) = max(jug|, [uf)-

Then it is well-known that F(R) is complete but nonseparable with respect to
the metric doo. Joo and Kim [7] introduced a metric ds in F(R) which makes it
a separable metric space as follows.

Definition 2.1. Let T denote the class of strictly increasing, continuous map-
ping of [0,1] onto itself. For 4, € F(R), we define

ds(4,0) = inf{e: there exists a t in T such that
sup |t(a) —a| < e and do(U,t00) < e},  (2.2)
0<a<l1

where t o0 denotes the composition of ¥ and t.
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Then it follows immediately that ds is a metric on F(R) and ds(@,7) <
doo (@, 7). The metric ds will be called the Skorohod metric. Note that a sequence
{tn} in F(R) converges to a limit @ in the metric ds if and only if there exists a
sequence of functions {¢,} in T such that

lim ¢,(c¢) = a uniformly in «,
n—oo

lim doo (tn(in), &) = 0.

n—eo
If doo(@ip, @) — 0, then dg(d,, %) — 0. But, the converse is not true. Now we
define, foru € F(R) and 0<d <1, 0<a< <1,

w,-,,(a,ﬁ) = h(La+1~L, Lﬂ’&)

= max(ub —uly, w2y — u%), (2.3)

where Lafﬂ denotes the closed interval [u}]+ , ui+] with convention ug+ the righs-
limit of u* at «. If we define

! .
wg(6) = inf max wg(a;-1, i), (2.4)
1<i<r
where the infimum is taken over all partitions 0 = ag < a1 < -+ < oy = 1 of

[0,1] satisfying o; — ;1 > ¢ for all 4, then, Lemma 3.2 of Joo and Kim [7] implies
that

}un w;(d) = 0 for each @ € F(R). (2.5)

-0
The following lemma which characterizes compact subsets of F(R) is useful
in proving the main result (for details, see Ghil, Joo and Kim [4]).

Theorem 2.2. Let K be a subset of F(R). Then K is relatively compact in the
ds-topology if and only if

sup{||%|| : & € K} < o0, (2.6)

lim sup{w(6) : & € K} = 0. (2.7)
6—0
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3. Main Result

Throughout this section, we assume that the space F'(R) is considered as
the metric space endowed with the metric d,, unless otherwise stated. Also, we
denote by B, the Borel o-field of F'(R) generated by the metric dj.

Let (€2, .4, P) be a probability space. A fuzzy number valued function X :
Q — F(R) is called a fuzzy random variable if it is measurable, i.e.,

X~YB) = {w: X(w) € B} € Afor every B € B,.

If we denote X (w) = {(X1(w),X2(w)) | 0 < & < 1}, then it is known that X
is a fuzzy random variable if and only if for each a € [0,1], X! and X2 are
random variables in the usual sense (see Kim [11]). A fuzzy random variable
X = {(X},X2) | 0 < a < 1} is called integrable if for each o € [0,1], X1 and
X2 are integrable, equivalently, [ ||X||dP < oo. In this case, the expectation of
X is the fuzzy number EX defined by

EX = {(EX},EX2)|0<a<1}). (3.1)

Definition 3.1. A sequence {X’n} of fuzzy random variables is said to be convex
tight if for each € > O there is a convez compact subset K of F(R) such that

P(X, ¢ K) < ¢ for all n.
Our main result is follows.

Theorem 3.1. Let {Xn} be a sequence of independent and convex tight fuzzy
random variables. If

sup E|| X,|[P < M < oo for some p > 1, (3.2)
n

then
I s I
nll)ngods (; El Xi,; El EX,-) =0 a.s.

To prove the above theorem, we need some lemmas.
First, for a positive integer m, if we define

k-1

fm : F(R) = F(R) by fm(i)(z) =)
k=1

’I:l IAk—-l\Ak (:L‘) —+ IAm (iL‘),
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where Ay = Lrt = |ul ,u%4 | ,k=0,1,---,m,

then it followsmthat o
L Lidif 0<a< i
“fm(“)z{ Lii if Blca<k k=2,

From this fact, it is obvious that

fm(a + '6) = fm(a) + fm(f))a

and
Fn(A) = Afm ().

Lemma 3.1. For each m, and @ € F(R),

(i ) < () + 2

m m

Proof. Let 0 = ap < a1 < --- < o = 1 be any partition of [0,1] such that
Qi1 — Qg > —Tlr—l foralli =1,2,--- ,7 — 1. Then for each 1 =0,1,--. ,r — 1, there

exists k such that k
a; < - < Q41

We define i, = min{k | o; < %} and take t € T to ’ﬁ at the points ¢; and be

linear in between. Then
sup| #(a) — af <
u a) —« -—.
ap - m
o <a<ay forsomei=0,1,--- ,7—1, then

a; < t(os) < t(a) < tait1)

and by (3.3), Ly(a;)fm (@) = Lo,i. Hence

sup  h(Lqil, Ly fm(i)) < wa(o, cig1).

a;<a<og4]

Therefore, we obtain

doo(tod, fm(@) = suph(Lai, Ly(a) fm (1))

< mgxwa(ai,ai+1),

(3.4)

/
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which implies together with (3.4),
7o 1
ds (@, fm (@) < m?xwﬁ(ai,ai+1) + o

By definition of w:-t(%), we conclude that

ds(il, i (i3)) Sw;(-ml-) + %
O

Lemma 3.2. If K is a relatively compact subset of F(R) in the ds-topology,
then
lim sup dg(@, fm (%)) = 0.

m—o0 ﬁGK

In particular, for each 4 € F(R),

lim dy (@, fm(@) = 0.

m—o0

Proof. It follows immediately from (2.7) and Lemma 3.1. O
Lemma 3.3. For each '&,ﬁ,d,l; € F(R), we have

4y + 6,5 + B) < do(@,9) + [|al] + /Bl
Proof. For a given € > 0, we find ¢ € T such that

doo (U, t 0 D) < ds(U, D) + €, (3.5)

sup |t(a) — o] < ds(@, D) + €. (3.6)
Then

doo(@i + @, to (¥ + b))
< deo(ti+a, tob+a) +de(tod+a, tod+tob)
= deo(ii, t09) +doo(d, tob)
< dy(@,8) + [|al| + [[Bl]] + ¢ by (3.5)
This inequality and (3.6) implies that
dy (@ + &, + b) < ds(@,) + ||| + [[Bl] + «.

This completes the proof since € > 0 is arbitrary. a
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Now we are in a position to prove the main theorem.

Proof of Theorem 3.1. Let ¢ > 0 be given. By convex tightness of {X’n}
there exists a convex compact subset K of F'(R) such that

P(X, ¢ K) <e/®~D for all n.

Without loss of generality, we can assume that 0 € K.
Then,

Blll g, ey %all € P(n ¢ K)O-D/P(B]|Zn|[P)/7 (3.7
< MY,

Now, if we denote
Yo = {XneK}X"’ Zp = I{XngéK}X"’

then by Lemma 3.3,

Z Vi, %Z ~m(~i)) (3.8)

IA
QU
w»n
3 TN TN
S|

Ly g L3 EY;
+ - i)y T i 39
s(” i=1 ) ni=1fm( )> &9
+ d, (1 WA A) iijfz-) (3.10)
ni:l ni:l
1 5 e 5
+ ||;ZZ1'|| +H;ZEZ¢]| . (3.11)
=1 =1

For (3.8), since K is convex and 0 € K, we have

ds (%ZYH %me(ﬁ)) < sup ds(a,fm(ﬂ))-
=1 =1

u€K
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Thus, by Lemma 3.2, there exists a mg such that
(3.8) < e forall m > my.

Now, for (3.9), we have
0 < o
h

m
<>
Since K is compact, we have, by (2.6),

sup ||%|| £ C < oo for some constant C.
ueK

If we denote
Xn={(XpaXno) |0<a <1},

n,a’

then
Yo = {()(rlz,al{f(ne[{}v XZ,aI{;(neK} |0 <a<1},

and so, for each a € [0, 1],
{Xé,aI{f{neK}l <, th,aI{)'(neK}l <C.

Thus, by the strong law of large numbers for random variables,
len, & 1 .
h (; > LY~ ZLQEY,)

i=1 i=1

1 n
< SD_Kialigiery = BXial(xicx))
i=1
1 n
+ n Z(Xi%aj{)'(ieK} - EXiz,aI{f(ieK})
=1

— 0 a.s. as n—o00.

137

Hence, for each given m, there exists a null set A, € A such that (3.9) converges
to zero for all w ¢ A,,. As for (3.10), by Lemma 3.2, there exists a m; such that

(3.10) <

{7}

up ds (@, fm(@)) < e for all m > my.
€K
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Now, for (3.11), we first note that
Il s Ls= s
3.11) < =) lzll+=)_EllZi|
n n
i=1 =1
15 . 2 = s
= = (IZill - BIZ) + = > BlIZi.

Since - o
1 - M
SLazaey M cw,
n=1 n=1
by Chung’s strong law of large numbers, there exists a null set A € A such thas

the first term of the right-hand converges to zero for all w ¢ A. For the second
term, (3.7) yields
n
2 S E|\Z| < 2eMP.
nis
Now let Q¢ = (UX_;Am) U A. Then P() = oo and for all w ¢ Qy and

m > max(mg, my),

1 noo n _
ds <—ZX,—, lZEX,) < 2¢(1 +M1/p) as n — oo .
A i
This completes the proof.

Remark 1. In the above theorem, we assume that {X,} is convex tight. The
need of convexity arises from the desired condition that a convex combination of
elements {4} of K, in particular, %Z?ﬂ i3, again belong to K. It remains an
open problem whether the similar result holds if we replace convex tightness by
tightness.

Remark 2. We note that not all #id sequence of fuzzy random variables are
convex tight. For example, let @y : R — [0, 1] be a fuzzy number defined by

A if 0<z <],
ay(z)=4¢ 1 if z=1,
0  elsewhere,

where ) € [0,1], and let {X,} be #id with

P(Xl G{ﬂx:)q S/\S)\Q}):)\g—)\l.



SLLN for Tight Fuzzy Random Variables 139

Now suppose that there exists a convex compact set K such that P(X; ¢ K) < e.
Then K necessarily contains a set of the form

K[I{QA:AEI},

where I C [a,1—a] and the Lebesque measure of I is larger than 1 —2a —e€. Since
K is convex and compact,
%(KI) C K,

where ¢0(K7) is the closed convex hull of K.

But by example 3.1 of Kim [12], ¢o(K[) is not compact. This is impossible.
Hence {Xn} is not convex tight. But while not being convex tight in this case,
we can apply the result of Joo and Kim [8].
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