Abstract
This study is an effort to develop a stochastic model of precipitation series that preserves the pattern of occurrence of precipitation events throughout the year as well as several characteristics of the duration, amount, and intensity of precipitation events. In this study an event cluster model is used to describe the occurrence of precipitation events. A logarithmic negative mixture distribution is used to describe event duration and separation. The number of events within each cluster is also described by the Poisson cluster process. The duration of each event within a cluster and the separation of events within a single cluster are described by a logarithmic negative mixture distribution. The stochastic model for hourly precipitation occurrence process is fitted to historical precipitation data by estimating the model parameters. To allow for seasonal variations in the precipitation process, the model parameters are estimated separately for each month. an analysis of thirty-four years of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many features of historical precipitation. The seasonal variations in number of precipitation events in each month for the historical and simulated data are also approximately identical. The marginal distributions for event characteristics for the historical and simulated data were similar. The conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.
본 연구는 간헐 수문사상인 시간강수계열의 구조적 특성을 고찰하여 강수발생의 군집성을 고려한 강수발생과정에 대한 추계학적 모의발생 모형을 개발한 것이다. 먼저 강수사상의 발생패턴을 기술하기 위해 Poisson 군집과정을 사용하였고, 이 과정에서 군집간의 시간과 군집내의 사상 수는 지수분포로 기술하였다. 둘째로 사상의 지속기간과 군집내에서 사상간의 시간은 음대수혼합분포로 기술하였다. 마지막으로 이상과 같은 시간강수사상의 발생패턴과 사상기간내의 강수의 종속구조를 구명하기 위해 서울을 대상으로 하여 실적강수자료를 분석하였다. Monte Carlo 모의결과는 모형이 강수발생의 계절적 패턴, 사상특성의 주변 및 조건부 분포를 잘 재현하고 있음을 보여주었다.