DOI QR코드

DOI QR Code

TOPMODEL의 토양수분 변동성 모의에 관한 연구

A Study on TOPMODEL Simulation for Soil Moisture Variation

  • 김진훈 (기상연구소 예보연구실) ;
  • 배덕효 (세종대학교 토목환경공학과) ;
  • 장기효 (기상연구소 예보연구실) ;
  • 조천호 (기상연구소 예보연구실)
  • 발행 : 2002.02.01

초록

본 연구에서는 TOPMODEL의 매개변수 m, $T_{0}$에 따른 토양수분 변동성을 검토하고, 일단위 관측 지하수위자료를 이용하여 모형내 포화층에서의 흐름인 지하유출과의 상대적 비교 및 유역출구에서의 관측유량 및 계산유량을 비교하여 TOPMODEL의 토양수분 모의 능력을 규명하였다. 이를 위해 국제수문개발계획(IHP)의 평창강 상류 상안미 유역을 대상으로 94~98년 사이의 여름철 호우사상과 지하수위자료를 선택하였다. 매개변수 m, $T_{0}$에 따른 TOPMODEL의 토양수분 변동성은 토양내 지하수면의 유효깊이를 나타내는 m이 증가할수록 토양수분 보유능력이 증가하고, 특히 큰 값의 $T_{0}$와 결합되면 이러한 현상이 현저한 것으로 나타났다. 모형에 의해 산정된 지하유출과 실측 지하수위자료를 상대적으로 비교한 결과 첨두량이 유사하게 지체되는 경향으로 나타났으며, 강우가 끝난 후의 수문곡선 하강부는 대부분이 지하유출에 기인하고 있음을 잘 표현하고 있다. 따라서 TOPMODEL은 유역 출구에서의 유출량 산정뿐 아니라 유역의 토양수분 변화 모의에도 적합한 것으로 판단된다.

The objectives of this study are to analyse model-based soil moisture variations depending on model parameters m and $T_0$ and to evaluate the model performance for the simulation of soil moisture variations by the comparison of observed groundwater levels and model-driven soil moisture amounts and observed and simulated river discharges at the basin outlet. The selected study area is the Pyungchang IHP river basin with outlet at Sanganmi station and the summer flooding events during '94-'98 are used for the analysis. As a result, soil moisture holding capacity is increased according to increase the parameter m that represents effective groundwater depth. This phenomenon is especially dominant when higher m and $T_0$ values are used. The qualitative comparison of computed base flow and observed groundwater level shows that the base flow peaks are reasonably simulated and the decreasing limbs of hydrograph are mainly caused by base flows. It is concluded that TOPMODEL can be used effectively for simulating basin-averaged soil moisture variations in addition to river flow generations.

키워드

참고문헌

  1. 배덕효, 김진훈, 권원태 (2000). 'TOPMODEL의 단일유역 홍수예보능에 관한 연구', 한국수자원학회논문집, 한국수자원학회, 제33권, 제1호, pp. 87-97
  2. 조홍재, 김정식, 이근배 (2000) 'TOPMODEL을 이용한 장기유출 해석', 한국수자원학회논문집, 제 33권, 제4호, pp. 393-405
  3. 조홍제, 조인률, 김정식 (1997) 'TOPMODEL을 이용한 강우 유출해석에 관한 연구', 한국수자원학회논문집, 제30권, 제5호, pp. 515-526
  4. 한국건설기술연구원 (1991). 평창강유역의 수문특성조사, 연구보고서, 건기연 91-WR-lll
  5. Avissar, R. (1990). 'The impact of soil moisture and vegetation on evapotranspiration and regional atmospheric processes.' Preprints of 8th Conference on Hydroclimatology, 22-26 October 1990, Kananaskis Park, Alta., Canada, American Meteorological Society, Boston, MA, pp. 7-11
  6. Bae, D.H. and Georgakakos, K.P. (1994). 'Climatic variability of soil water in the American Midwest: 1, Hydrologic modeling.' J.. of Hydrology, Vol. 162, pp. 355-377 https://doi.org/10.1016/0022-1694(94)90236-4
  7. Beven, K., Quinn, P., Romanowicz, R., Freer, J., Fisher, J. and Lamb, R. (1994). TOPMODEL and GRIDATB, A Users Guide to the Distribution Versions (94.03), CRES Technical Report TR110/94, Lancaster University, Lancaster, UK
  8. Beven, K.J. and Kirkby, M.J. (1976). 'Towards a simple physically-based variable contribution area model of catchment hydrology.' Working Paper 154, School of Geography, University of Leeds
  9. Beven, K.J. and Kirkby, M.J. (1979). 'A physically based variable contributing area model of basin hydrology.' Hydrol. Sci. Bull, 24(1), pp. 43-69 https://doi.org/10.1080/02626667909491834
  10. Beven, K.J., Kirkby, M.J., Schofield N. and Tagg A.F. (1984). 'Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments.' J. of Hydrology, Vol. 69, pp. 119-143 https://doi.org/10.1016/0022-1694(84)90159-8
  11. Franchini, M., Wendling, J., Obled, C, Todini, E. (1996). 'Physical interpretation and sensitivity analysis of the TOPMODEL.' J. of Hydrology, Vol. 175, pp. 293-338 https://doi.org/10.1016/S0022-1694(96)80015-1
  12. Georgakakos, K.P. and Bae, D.H. (1994). 'Climatic variability of soil water in the American Midwest: 2, Spatio-temporal Analysis.' J. of Hydrology, Vol. 162, pp. 379-390 https://doi.org/10.1016/0022-1694(94)90237-2
  13. Georgakakos, K.P. and Baumer, O.W. (1996). 'Measurement and utilization of on-site soil moisture data.' J. of Hydrology, Vol. 184, pp. 131 152 https://doi.org/10.1016/0022-1694(95)02971-0
  14. Georgakakos, K.P. and Smith, G.F. (1990). 'On improved operational hydrologic forecasting: results from a WMO real-time forecasting experiment.' J. of Hydrology, Vol. 114, pp. 17-45 https://doi.org/10.1016/0022-1694(90)90073-7
  15. Georgakakos, K.P., Bae, D. II., Cayan, D.R. (1995). 'Hydroclimatology of continental watersheds, temporal analyses.' Water Res. Res., Vol. 31(3), pp. 655-675 https://doi.org/10.1029/94WR02375
  16. Huang, J., H.M. van den Dool, Georgakakos, K.P. (1996). 'Analysis of model calculated soil moisture over the United States (1931 1993) and application to long-range temperature forecasts.' J. of Climate, Vol. 9, pp. 1350 1362 https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2
  17. Kirkby, M.J. (1975). 'Hydrograph Modelling Strategies.' In R. Peel, M. Chisholm and P. Haggett (Eds) Process in Physical and Human Geography, Heinemann, pp. 69-90
  18. Kitanidis, S.E. and Bras, R.L. (1980). 'Real time forecasting with a conceptual hydrologic model, 2. Application and results.' Water Res. Res., Vol. 16(6), pp. 1034-1044 https://doi.org/10.1029/WR016i006p01034
  19. Kunkel, K.E. (1990). 'Operational soil moisture estimation for the Midwestern United States.' J. Appl. Meteorol, Vol. 29, pp. 1158-1166 https://doi.org/10.1175/1520-0450(1990)029<1158:OSMEFT>2.0.CO;2
  20. Quinn, P.F., Beven, K., Chevallier, P., and Planchon, O. (1991). 'The prediction of hillslope flow paths for distributed hydro-logical modelling using digital terrain models.' Hydrological Processes, Vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  21. Saulnier, G. M., Beven, K., Obled, C. (1997). 'Digital elevation analysis for distributed hydrological modeling-' Reducing scale dependence in effective hydraulic conductivity values', Water Resour. Res., Vol. 33, No. 9, pp. 2097-2101 https://doi.org/10.1029/97WR00652
  22. Schmugge, T.J., Jackson, T.J., Mckim, H.L. (1980). 'Survey of methods for soil moisture determination.' Water Res. Res., Vol. 16(6), pp. 961-979 https://doi.org/10.1029/WR016i006p00961
  23. Wolock, D.M. and McCabe, G.J. (1995). 'Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL.' Water Res. Res., Vol. 31(5), pp. 1315 1324 https://doi.org/10.1029/95WR00471