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COMPLETE PROLONGATION AND THE FROBENIUS
INTEGRABILITY FOR OVERDETERMINED SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS

JAE-SEONG CHO AND CHONG-KYU HAN

ABsSTRACT. We study the compatibility conditions and the exis-
tence of solutions for overdetermined PDE systems that admit com-
plete prolongation. For a complete system of order k there exists a
submanifold of the (k — 1)st jet space of unknown functions that is
the largest possible set on which the initial conditions of (k — 1)st
order may take values. There exists a unique solution for any ini-
tial condition that belongs to this set if and only if the complete
system satisfies the compatibility conditions on the initial data set.
We prove by applying the Frobenius theorem to a Pfafian differ-
ential system associated with the complete prolongation.

Introduction

In this paper we study the compatibility conditions and the existence
of solutions for overdetermined systems of partial differential equations
by means of complete prolongation and finding the Frobenius integra-
bility conditions. Consider a system of partial differential equations of

order ¢ (g > 1) for unknown functions u = (u!,--- ,u4™) of independent
variables = = (z!,-- ,2")
(1) Ar(z,u®)=0, A=1,--- I,

which is overdetermined, that is, m <« [. Here 2 varies in an open
set X C R”, u in open set U C R™ and u(? denotes all the partial
derivatives of u up to order ¢ and each Ay(z,u(?) is a polynomial in
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1?9 with coefficients that are smooth functions in z. We call such Ay a
differential polynomial of order g. For each positive integer p the set A,
of all differential polynomials of order < p forms a commutative algebra
over the ring of smooth functions in z. We call the set J9(X,U) :=
{(z,u'®) : £ € X,u € U} the space of ¢g-th jets of u. If f : X — U
is smooth (C'°°), let (*f)(z) = (x, f(x),0%f(z) : |a| < k), then j°f is
a smooth section of the vector bundle J*(X,U) — X called the k-jet
graph of f. The total derivative of a differential polynomial H(z,u*))
of order k with respect to z* is a differential polynomial of order & + 1
defined by the chain rule:
OH OH

@ (D) wt ™) = x + 22 Wiy

where J = (41, , jn) is a multi-index such that |J| < k and J, A = (ji,

: 7j)\+1) :jn)-

By prolongation of (1) we simply mean any process of total differen-
tiations and algebra operations on A to get new equations. Let Sa be
the subvariety of J4(X,U) defined by (1). A smooth function u = f(z)
is a solution of (1) if the g-jet graph

z = (z, /9 ()

is a submanifold of Sa. Our viewpoint in this paper is purely local and

we assume that the reference point (mo,u((f)) € Sa has a neighborhood

2 which is open in J9(X, U) such that
i) SanN is asmooth manifold
(3) and
i) dr'A---Adz” #0 on SANQ.
We further assume that (3) holds at each stage of prolongation. In this
paper we study the cases that the total derivatives of (1) of sufficiently

high order, say order r, can be solved for all the partial derivatives of u
of certain order, say k, as functions of the lower order derivatives:

4 ut = Hé(2z,u* V) VK, with |K|=k Va=1,...,m.
K K

We will call (4) a complete system of finite order k and (1) is said to
admit prolongation to a complete system (4) (see Definition 1.3). An
easy calculation shows that as we differentiate (1) r times

number of the equations

number of the variables in u(¢+7)
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tends to [/m as r — oo. Hence, for a sufficiently large r it happens
generically that the hypothesis of the implicit function theorem holds so
that

DAy =0, I <r, A=1,...,1

is solvable for all the k-th order partial derivatives of u, for some %, in
terms of the lower order derivatives as in (4). In this paper, however, we
consider only the cases where H{ are differential polynomials. Every
ordinary differential equation of order n

y(ﬂ) = F(:E7 y7 y’7 y,/’ et ’y('n_l))
is obviously a complete system of order n.

ExAMPLE 1. Consider the following system for one unknown function
u(z,y) in two independent variables:

(5) { Uy + uty = a(z,y)

Uyy + u? = b(z,y)-

We shall show that (5) admits prolongation to a complete system of
order 2. Differentiate the first equation of (5) with respect to z and v,
respectively, to obtain

Uy + Uply + Ulgy = O,
(6) Ugy + U;Z; T ULy = Gy,

Uyy + u* = b.
By solving (6) for all the second order derivatives we have

Uy = H11($,u(1)) = —UgUy + uuy2 —u* + bu® — ayU + Qg
(7) Upy = Hia(z,u) == ~u,? +u® —ub+ a,,

Uyy = Hgg(.’l?,u(l)) = —u? + b,

which is a complete system of order 2.

Once a complete prolongation is attained, the problems of existence,
uniqueness and regularity of solutions of (1) reduce to those of a Pfaffian
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differential system 4n the jet space, which are essentially problems of or-

dinary differential equations: On the jet space J*~1 (X, U) we consider
a Pfaffian differential system

T
0% == du® — }: ulde* =0,
A=1

(8) "
07 = duf — > uf,dz* =0, |I|<k-2,
A=l
n
(9) §i=dub— > Hfyda* =0, |J|=k-1
A=1

with the independence condition
(10) Q:=dz' A Adg™ £ 0,

where Hf, are as in (4). Observe that (9) is defined only for those
points (z,u*~V) that satisfy (1) and its prolongations. Let u = f(z)
be a C* mapping of an open subset of R” into R™. If u = f (z) is a
solution of (1) then

2> (@, 7D ()

is an integral manifold of the n-dimensional distribution defined by (8)-
(10). Thus we have

THEOREM 1. (UNIQUENESS AND REGULARITY OF SOLUTIONS).
Suppose that (1) admits prolongation to a complete system of order
k. Then a C* solution is uniquely determined by its (k — 1)-jet at a
point, that is, if u = f(z) and u = g(z) are C* solutions of (1) and if
g* =V (xq) = f*1(xy) then f = g. Furthermore, a C* solution f is
indeed C*°. If the coefficients of each Ay in (1) is real analytic then f
is real analytic.

Now suppose that a complete system (4) is obtained from the r-th
prolongation of (1). We consider a subset S}_, of J*71(X,U) where
the initial data may vary (Definition 1.4). Then we apply the Frobenius
theorem to the Pfaffian system (8)-(10) on Sj_; to obtain necessary
and sufficient conditions for a unique solution to exist for any initial
data that lies on S;_,. Let D be the distribution defined along S_, by
(8)—(10). We prove
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THEOREM 2. Suppose that (4) is a complete system of order k ob-
tained from the r-th prolongation of (1) and that S],_, is the associated
initial data set. Then the following are equivalent:

i) (1) has a unique smooth solution for every initial condition

(zo, u((,k_l)) €S _,.

ii) D is tangent to Sj,_, and integrable in the sense of Frobenius.

iii) D is tangent to S;,_, and (4) satisfies the compatibility conditions
on &;_,, namely,

(11) D,\Hfi“ =D,Hj, onSj;_;

for each a = 1,... ,m, each multi-index J with |J| = k — 1 and
each p,A=1,...,n.

To relate our theorems to the theory of exterior differential system
we recall first that a smooth mapping v = f(z) is a solution of (1)
if and only if the g-th jet graph j?f(z) is an integral manifold of the
Pfaffian differential system (8) with |I| < ¢ — 1 and the independence
condition (10) on Sa. Then the Cartan-Kahler theorem asserts that if
all the data are real analytic and the system is involutive (see [1] for
definition) then there exist integral manifolds. The existence of integral
manifolds is proved by repeated applications of the Cauchy-Kowalevski
theorem. The Cartan-Kuranishi theorem [10] asserts that given an an-
alytic Pfaffian differential system 6 = 0,2 5 0, under certain regularity
agsumptions the system converts by a finite number of prolongations
either to an involutive system or to a system that has no solutions. For
the Pfaffian differential system (8)—(10) given by a complete system of
order k the 1-forms {#¢ : |I| < k — 1} and dz',... ,dz™ form a coframe
of JF~1(X,U) along S7_, and the involutivity is equivalent to the con-
ditions as in Theorem 2. Complete prolongation has twofold merits:
Firstly, all the terms of order > k are reduced to the lower orders so
that our argument stays in the (k — 1)st jet. Secondly, the existence of
solutions can be discussed in smooth (C°°) category, where the prob-
lem is finding an appropriate submanifold & of J*~1(X,U) having the
following properties:

i) the initial data up to order (k — 1) take values in & and the distri-

bution D is uniquely defined along &S,

il) D is tangent to S,

iii) D satisfies the Frobenius conditions on S.
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The submanifold S;,_; in Theorem 2 is the largest such S. Recently,
several authors have constructed complete systems in various mapping
problems, namely, [8] for CR mappings between real hypersurfaces of
finitely degenerated Levi form, [6] for mappings of CR manifolds of non-
degenerate Levi form into a higher dimensional CR manifold, [9] for
pseudohermitian embeddings. Similar construction is possible for the
mappings preserving Riemannian or conformal structures, see [7]. De-
termination of mappings by finite jet that are studied in [3] and [13]
seems to be closely related to the complete prolongation. We attempt
to develop existence theory for such mappings that are determined by
finite jet.

For the definitions and notations that are not defined in this paper
we refer to our main references [1], [4] and [11]. The algebraic setting is
to be chosen appropriately depending on the problems. In this paper we
restrict our interest solely to differential polynomials. This paper was
written in the fall of 2000 when the authors were visiting the Univer-
sity of Illinois. We thank J. P. D’Angelo and the faculty of the Math
Department for their interest and hospitality.

1. Complete prolongation and the Frobenius integrability

Overdetermined PDE systems generically admit prolongation to com-
plete systems of finite order as we have observed. However, actual calcu-
lation of prolongation to a complete system is usually very complicated.
The crux of the method of prolongation is in the reduction of order by
eliminating the highest order terms using the symmetry of the system.
In the cases of embedding equations knowing the geometric local invari-
ants are often helpful in finding the right symmetry (cf. [2], [5], [7])-
In this section we discuss the compatibility conditions and the existence
of solution of (1) that admits prolongation to a complete system (4) of
order k. Qur strategy is to find a submanifold S]_, of J*~1(X, U) where
the initial condition may vary and then check the Frobenius integrability
conditions. Let

A= (A, A)

be a system of differential polynomials of order ¢ as in (1). The common
zero set Sp C JI(X,U) of Ay, A=1,...,[, shall be called the solution
submanifold of (1). A smooth mapping u = f(z) of X into U is a
solution of (1) if and only if its g-jet graph (x, f(@(x)) is contained
in 8So. The set A of all differential polynomials forms a commutative
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algebra over the ring of smooth functions in z. For each nonnegative
integer p let A, be the subalgebra of differential polynomials of order
< p. Let A be the set of all the differential polynomials that are raised
up to order ¢ by differentiating A,’s. For each nonnegative integer r the
r-th prolongation of A, denoted by A", is the ideal (algebraic ideal) in
the algebra A, generated by all the total derivatives of A of order up
to r. For each pair (r,s) of nonnegative integers let

AT =AM N A4,

Then AT is an ideal in A,. The elements of AT\ A7~! with s < g+
occur when the highest order terms in A(") cancel out by the algebra
operations of A, as the following two examples show. These elements
play important roles in prolongation.

ExaMPLE 1.1. Let u be an unknown function in two variables (21, 2)
Let A = (u11 +u2, u1p +u1). Then

Do (ugy +uz) — Di(uiz +u1) = uge —uny € Ay \ AJ.

ExaMPLE 1.2. Let M™ be a smooth manifold with a smooth Rie-

mannian metric g. Let = (z1,... ,2Z,) be local coordinates of M. A
smooth mapping u = (u!,... ,u™) of M into R™ is an isometric embed-
ding if u satisfies
(11) Az—j = Zufu? - gij(az) = 0.
a=1

By differentiating (1.1) two times we get the Gauss equations: For each
4-tuple of integers ¢, 4,k,0 = 1,... ,n we have

™

Z(“?ku?z - Uszu?k)
(12) a=1

T 2 |02°0s! | 0290z%  0x0zF  070a
In the process of addition and subtraction of second derivatives of (1.1)
all the third order derivatives of u cancel out due to the symmetry in
(1.1). Each equation of (1.2) belongs to A2\ Al. See [2] for the details.

1 [ 82951 g d%g;1 O gix }

Let 87 € J*(X,U) be the set of common zeros of all elements of AT.
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DEFINITION 1.3. Given a system (1) of order ¢ let r and k be a
pair of nonnegative integers having the following properties: the r-th
prolongation A" contains differential polynomials of the form

(1.3) b (2, u®) = uf — Hie(z,ulb D)

for each a = 1,... ,m, each multi-index K with | K| = k.

If such a pair of integers (r, k) exists we say that (1) admits prolon-
gation to a complete system of order k and b% (x,u®)) = 0 is called a
complete prolongation of (1).

DEFINITION 1.4. Let (4) be a complete prolongation of (1) that is
obtained from the r-th prolongation A(™. Then the common zero set
S, C JFTY(X,U) of Af_, is called the initial data set associated with
the complete prolongation.

THEOREM 1.5. (UNIQUENESS OF THE COMPLETE PROLONGATION).
Suppose that the complete system (4) is attained by the r-th prolon-
gation of (1). Then (4) is the unique complete system of order k on

ul = G4 (z,u* 1), a=1,...,m, |K|=k

be a complete system of order k obtained from the r-th prolongation
A") . Then the difference between these two complete systems H & —G%
belongs to the ideal A("™) and hence belongs to Af_,. Therefore, on S§_,
we have

H% —G% =0

for each ¢ = 1,...,m, each multi-index K with |K| = k and each
a=1,...,m. O

Now let D be the n-dimensional distribution defined along S7_, by
(8)-(10). The main theorem of this paper is the following
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THEOREM 2. Suppose that (4) is a complete system of order k, k > g,
obtained from the r-th prolongation of (1) and that Sj,_, is the associ-
ated initial data set. Then the following are equivalent:

i) (1) has a unique smooth solution for every initial condition

it) D is tangent to S]_, and integrable in the sense of Frobenius.
iif) D is tangent to Si_, and (4) satisfies the compatibility conditions
on S&7_,, namely,

for each a = 1,... ;m, each multi-index J with |J| = k — 1 and
each p,A=1,... ,n.

Proof. i) < ii)

Suppose that 1) holds. For any point (o, u(()k_l)) eS8 _ letu=f(z)
be the solution with the initial condition f%*~1)(zq) = ul*~1(zg). Then
for every z in a neighborhood of zy in R™ (z, f*~Y(z)) annihilates
every differential polynomial of A7_;. Hence, the (k — 1)-jet graph
z > (z, f#1)(z)) is a submanifold of S]_, and also an integral manifold
of D. This implies that D is tangent to S},_; at (zg, ugk_l)) and S7_, is
foliated by integral manifolds of D, which is the Frobenius integrability
of D. Conversely, by the Frobenius theorem ii) implies that for every

(o, uékml)) € 8p_, there exists a unique integral manifold (z, f(*=1)(z))

of D such that f*~1)(z4) = uék_l). Then u = f(z) is a solution of (1).

i) <> iii)

Extend D by extending (9) to a neighborhood of 8§_, in J*~1(X,U).
We use the summation convention under the agreement that the indices
in Greek letters vary 1 through n and the indices in the Roman letters
vary 1 through m. Now we compute the exterior derivative of each
1-form: By (8)

do® = d(du® — uldz™)
= —du$ A da?
= — (85 +uf,dz") A da?
= —uy,dz" A dz?

= — Z(uf{‘“ — Uy )dzt A dz?, mod 6.
pulv
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H a _ ,,a
Since u$,, = ug,, we have

(1.5) dé* =0, mod 6.
Similarly, for the multi-indices I with |I| < k — 3 we have
(1.6) doy =0, mod 4.

For the multi-indices I with |I| = k — 2 we have
do7 = —duj \ A dz?
=~ (0% » + Hyxp)dz" A dz’

== Z(Hﬁ/\,u — Hf , \)dzH A dz™, mod 8.
[TEN

(1.7)

Since Hf, , = Hf , \ we have
dff =0, mod 4.
Now for the multi-indices J with |J| = & — 1 we have
—d0% = dHS 5 A dz*
= (HY)ordz* Adz + (HS \)w dw? A dz?

(1.8) + Y (H3),du} Ada?
[T <k=2

+ Z (H‘?’A)uzdu;AdmA.
|[|=k-—-1
Substituting du’ = 67 4 ul, dzt, clu“'} = 9}' + u?“dx“ for |I| < k-2
and duj = 07 + Hj ,dx#* for |I| = k — 1 the right hand side of (1.8)
becomes, mad 8,

S {ES ) e+ R i+ Y (HE)
A

|I|<k—2
+ Y (HL,, H}',#}dz“ A dz?
|T|=k—1
= ZDM(Hﬁ’A)dx“ A daz?
H,A
= > (D,H3, — DrHS,)dz* A dz?.
LA

Therefore, df5 = 0, mod §, on S;_, if and only if (11) holds. This
completes the proof. ]
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2. Examples

In this section we present two examples of overdetermined PDE sys-
tems and discuss the compatibility conditions and the existence of solu-
tions by using Theorem 2.

ExaMpLE 2.1. For one unknown function of two variables u(z,y) let

(2.1) { Ar =g +uy —a(z,y) =0
' Az = uyy + c(z,y)u? — b(z,y) = 0.

Differentiate the first equation of (2.1) with respect to  and y, respec-
tively, to obtain

Ugy + Ugy = Ay,
(2.2) Ugy + Uyy = Gy,
Uyy T+ cu® =b.

Solving for all the second order derivatives of u we obtain

Ugy = Qg — Ay — CU2 + b= Hll;
(23) Ugy = Ay + CU2 —b:= H]z,

Uy = —Cu,2 + b= HQQ.
Notice that (2.3) was obtained from the ideal AY of A, generated by
A = {Al, D:,:Al, DyAl, Ag}

Thus, we take the initial data set 8¢, the zero set of AJ. It is easy to see
that &Y is the subset of J*(X,U) defined by the first equation of (2.1),
namely, A; = 0. The distribution D is given by 1-forms
0 = du — uzdz — u,dy,
9;5 = dum -— Hudl’ — ngdy,
9y = d’l.l,y - ledﬂf — Hggdy.

To see whether D is tangent to S? we check whether the exterior deriva~
tive of the defining function A belongs to the algebraic ideal generated
by {6,05,6,} on 8). A straightforward calculation shows that

dA; = d(u, + Uy —a) =6, + 6,
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which implies that D is tangent to SY.
As coordinates of S? we use (z,y, u, u, ). Compatibility conditions are

(2.4) DyHyy = D, Hyo,
Dyﬂlg = D$H22.
Restriction (2.4) to &Y gives
(2.5) yy — (by +by) + 2acu + (¢ +c)u’ = 0.

By Theorem 2 the system (2.1) has a unique solution for every initial
condition (zo, Yo, to, (Ux)g, (¥y)y) With (uz)y + (uy)y = alzo,%0) if and

only if (2.5) holds on S7. Now (2.5) is equivalent to

ayy — (by +by) =0,
(2.6) ac =0,
¢r +c¢y =0,

which holds if and only if either

a=0,
(2.7) by + by, =0,
¢y +cy =0
or
c=10,
(2.8)

Qyy — (by +by) = 0.

Therefore, (2.1) has a unique solution for any initial condition that lies
on 8¢ if and only if the coefficients satisfy either (2.7) or (2.8).

Our second example is the “test case” (see [12]) of the equivalence
problem of Riemannian structures. We present another proof of the
classical theorem which states that a Riemannian n-manifold is locally
isometric to R™ if and only if the curvature tensor is zero.
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EXAMPLE 2.2. Let M be a smooth manifold of dimension n with a
smooth Riemannian metric g. Let z = (z%,... ,z") be a local coordinate
system of M. A mapping v = (u!,... ,u"”) : M — R™ is an isometric

equivalence if u satisfies

T

(2.9) Zuf‘u? =g, foreachi,j=1,...,n,

a=1

U

where u$ = %ﬂ—a and g;; = g(8;, 9;). Differentiating (2.9) with respect
to z* we have

Zuw +Zu ujk_agfz foreach i,7,k=1,---,n

A linear summation after permuting the indices in the above yields

T
a a_l ag’lj ag'ik' agjk;
%:ujku,: T2 {8:{:’“ * B Ozt

Denoting the right hand side by [jk, 4] we have
i
(2.10) > ufud = [jk,i] foreach i,5,k=1,...,n

Since the matrix [u$ is nonsingular, we can solve (2.10) for all the

i ]cx i
second order derivatives of u® in terms of (z,u")) by the implicit func-
tion theorem. To work in the category of differential polynomials we

consider the following dual expressions of (2.9):

(2.11) Z g'”'juf‘u? =58,

=1

where the matrix [¢"7] is the inverse matrix of [g;;] and 627 is the Kro-

necker delta. By multiplying (2.10) by uf ¢* and summation over re-
peated indices we obtain

(2.12) > uudul gt = [k, du g

..l 2l
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Let Ty o= D00, g*[jk, i] be the Christoffel symbols. Substituting (2.11)

for ulu; g” in the left hand side of (2.12) we have for each 3,7,k =
1,...,n

(2.13) :,k = ZP () ul )

which is a complete prolongation of order 2 of (2.9). (2.13) is obtained
from the first prolongation of (2.9) and the associated initial data set is
Si ¢ JY(X,U), which is defined by (2.9). For each o, =1,... ,n let
(2.14) 05 = duf — T \ufds™.

J

Then the exterior derivative of the defining functions of S} is

d(us u — 9ij)
— 43 .
(2-15) - du 'lL +U du ngj 6
= (Thupud + T ufug aii/{)dx’\, mod 6 := {62},

by (2.14). Substituting T}y := 370, g"[i), 1] and T, = Y77 ; g% i), 1]
we see that for each A the quantity in the parenthesis of the last equation
of (2.15) is zero on S, which implies that the distribution D defined by
0% = 0 is tangent to S1. Therefore, by Theorem 2, (2.9) has a unique

solution for any initial condition (zo, uél) ) € 8 if and only if the com-
patibility conditions

(2.16) (E Il ) =D;, (Zn: rgkuf)
=1

holds on 8 for all 4,4, k, 8 = 1, ... ,n. Then by (2.13) the left hand side
of (2.16) is

n 8I\)\k n
> (G + 2wt )
A=1 =1

and the right hand side of (2.16) is similarly

é ((%J +Zrlkru>
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Therefore, (2.16) holds if and only if

LA ) N |
(2.17) Do~ o D (T3l — THTS) | ul = 0.
A=1 =1

The quantity in the bracket in (2.17) is the component R:\J ., of the cur-
vature tensor. Since the matrix (uf) is nonsingular on &%, (2.17) holds

if and only if R}, is equal to zero for each j, k, I, A.
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