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THE EXPECTED INDEPENDENT DOMINATION
NUMBER OF TWO TYPES OF TREES

CHANGWOO LEE

ABSTRACT. We derive formulas for the expected values j(n) of the
independent domination numbers of a random planted plane tree
and a random trivalent tree with n vertices, respectively, and we
determine the asymptotic behavior of u(n) as n goes to infinity.

1. Introduction

Let D be a digraph. A subset S of vertices of D is a dominating set
of D if for each vertex v not in S there exists a vertex u in S such that
(u,v) is an arc of D. The domination number of D is the number a(D)
of vertices in any smallest dominating subset of vertices in D. A subset
I of vertices of D is an independent set of D if no two vertices of I are
joined by an arc in ). The independence number of D is the number
B(D) of vertices in any largest independent subset of vertices in D. An
independent dominating set of D is an independent and dominating set
of D. The independent domination number of D is the number o' (D) of
vertices in any smallest independent dominating subset of vertices in D.
A directed rooted tree is an oriented rooted tree in which every direction
is led away from the root. In this article, rooted trees are.regarded as
directed rooted trees in the sense above. For definitions not given here,
see [2].

There are (2;)/ (n 4+ 1) binary trees T with 2n + 1 vertices. Let
u(2n 4+ 1) denote the expected value of the independent domination
number o' (T') over the set of such binary trees. Lee showed in [5] that

_ . (n)n
p(2n+1) = (k+1)2° o),
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for n =0,1,2,..., where the inner sum is over all even integers k with
1 < k <n and (n); denotes the falling factorial (n)y =n(n—1)---(n—
k+1), and that
p(2n+1) 1
e —— __> p—
2n+1 2
as n — oo,
The goal of this article is to do similar work for “planted plane trees”

and “trivalent trees”: For planted plane trees with n + 2 vertices,

pn+2) =1+ RHZZ 2njrlzk(k)<2n7jk>

nllkl

for n > 1 and
u(n +2)
n+2
as n — oo. For trivalent trees with 2n 4 2 vertices,

n+1| o= k25t fon — k
p(2n+2) = (?){;ﬂZn—k( . )
_L”Z/QJ (2 + 145 [2n — 2% +1
m—2%k+1\ n+l

p(2n +2) 1
merT e -
2n+2 2

1
—_ =
2

for n > 1 and

as n — 0.

2. Preliminaries

An oriented tree is a tree in which each edge is assigned a unique di-
rection. A digraph might have no independent dominating sets as we can
see in 3-cycles. However, every oriented tree has a unique independent
dominating set [5]. Therefore, we have the following lemma.

LEMMA 1. Every rooted tree has a unique indcpendent dominating
set.

If T is a tree with root r and v is a vertex of T, then the level number
of v is the length of the unique path from » to v in 7. If a vertex v of a
rooted tree T has level number [, we say that v is at level [. It is, thus,
easy to see that the set of vertices at even levels of T is actually the
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unique independent dominating set of T'. Let N.(7") and No(T') denote
the number of vertices at even and odd levels of T, respectively. Then,
we obtain that

No(T) = o/(T) and N.(T)+ N,(T) = |V(T)I.

3. Planted plane trees

A planted plane tree is a tree that is embedded in the plane and
rooted at an end-vertex (or a vertex of degree one). Two such trees
are equivalent if there exists a one-to-one correspondence between their
vertices such that

(a) the roots correspond,

(b) adjacency of vertices is preserved,

(c) the cyclic ordering of the vertices adjacent to each vertex is pre-
served.

Let y, denote the number of planted plane trees with n 4 2 vertices
for n > 0. Clearly, yg = 1. If n > 1, consider an ordered set of j planted
plane trees 71, ...,T; that have n + j vertices altogether. If the roots of
these j frees are identified and joined to a new vertex r, the resulting
configuration may be regarded as a planted plane tree T° with n + 2
vertices that is rooted at the end-vertex r. The vertices are not labeled
and different orderings of the subtrees T1,...,T; vield different trees T
in general. It [ollows, therefore, that

n
Yo = 2D Vs Ve,
Jj=1

for n > 1, where the inner sum is over all solutions in integers to the
equation a1 + --- +a; =n — j. Thus if

y=y(@) =Y yuz",

n=0

then
1
(3.1) y=l+ay+22yP>+- = .
1 —zy
Hence, we obtain
1 /2 "

3.2 :—(1—\/1—4):
(32) Y= 9 * Z ( n ) n -+ 1
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since y(0) = 1. This, of course, is well-known argument. See [3]. In the
argument above, observe that

J

(3.3) Ne(T) = 1+ZNO(T]C)9
k=1
(3.4) No(T) = L1—j+ > Ne(Ti).
k=1

For 1 £k <n+1,let f, ; and g, 1 denote the number of planted
plane trees T" with n + 2 vertices such that N.(T) = k& and N,(T) = k,
respectively. Let

o0 n-+1

(3.5) F=F(z,2) = Y (an“,x\)x
n=0 k=
[o%s] :;-l—i

(3.6) G=0Gz,z) = Z(Z gn’kzk)l.n_
n=0 k=1

It follows by a slight extension of the argument used to establish equation
(3.1) that
(3.7) F = z(142G+2*G*+--+)

z

T 1-z2G’

52
z—xF’
The factor z is present in the equation (3.7) because of (3.3), and the
factor 2177 of the term z' 727 FJ in the equation (3.8) is present because
of (3.4). Notice that

(3.9) F(z,1) =y(z) and G(z,1)=y(z).

(3.8) G = z4+zF+27"%2F24+... =

THEOREM 2. Let p(n+2) denote the expected independent domina-

tion number of the (*7) —7 planted plane trees with n + 2 vertices and
define
- 2n\ z"
. M(z) = —
(3.10) (<) g“(”“)(n)nﬂ
Then we have
(3.11) Mz)=y—1+
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Proof. It is easy to see that
(3.12) M(x) = F.(z,1).

If we differentiate both sides of equations (3.7) and (3.8) with respect
to z, set z =1, and use equations (3.12), (3.9), and (3.1), we obtain

(3.13) M@)=y+ (y — 1)G.(z,1),

(3.14) Gz, 1) = =% + 2y + (y — 1)M(z).

If we substitute (3.14) for G,(z, 1) in (3.13), solve the resulting equation
for M(z), and use (3.1) again, we obtain the required result. O

We know that M (x) is the generating function for the total sums of
the independent domination numbers of planted plane trees. Therefore,
using power series expansion of M (z) in z, we could find directly the ex-
pected value p(n+2) of the independent domination numbers of planted
plane trees for small n. Actually, it follows from (3.2), (3.11), and the
routine use of Mathematica that

y(z) = 1-+z+ 222 +52° + 1da* + 4225 + 1322° + 42927
+14302% + 4862x° + 167960 + - ..
and
M(z) = 1422+ 52%+152° + 495* -+ 1682° + 5942°
+21452" + 78652° + 291722° + 10917420 + - .- .

Table 1 shows the values of p(n+2) and p(n+2)/(n+2). The entries
for n < 4 were verified using the diagrams in [7] for planted plane trees
with up to 6 vertices.

Furthermore, we can derive a reasonably explicit formula for p(n+2)
as follows.

TABLE 1. p(n +2) and p(n +2)/(n + 2)

n 0 1 2 3 4

p(n + 2) 1 2 2.5 3 3.5
p(n+2)/(n+2) .5000 .6666 .6250 .6000 .5833
n ) 6 7 8 9

p(n +2) 4 4.5 5 5.5 6

pwn+2)/(n+2) 5714 5625 .5555 .5500 .5454
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THEOREM 3. The expected value pi(n + 2) of the independent domi-
nation numbers of planted plane trees with n + 2 vertices is

B =T

forn > 1.

Proof. The following identity appears in [8]:

(I—M)n _ in(%—kn— 1)!1:,c

(3.15) 2% Rk + )]

k=0
for integer n > 1. Let f = > ana™ be a formal power series and let

[z”]f denote the coefficient a,, of 2™ in f. It is easy to see from (3.10)
and (3.2) that

(3.16) ) M(2) = p(n +2) (2:) . i 1
and
(3.17) &y — 1) = (2:) —

To find [2"](1/(2 — y)), recall that (3.15) is not valid for n = 0 and that
y — 1 has a power series expansion with zero constant coefficient. For
n > 1, it follows from (3.15) that

(3.18) [x”](Q_é"y") = [“’n](Wl—l))

Il
E)
=

5
<

|

—
=

[
E)
3
—
<

!

—
=
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n G 1)*k ( ) <2n + k)
Z]=1 /LZ=1 2n+k \k 7
It follows from (3.11) that

(2" M (z) = [2](y ﬁ1+§-1—) = " - 1) + ) (5
and thus from (3.16), (3.17), and (3.18) that

a3 ()it SR RO

=1 k=1

Therefore, we obtain the required result. [

COROLLARY 4. The expected value pi(n+2) of the numbers of vertices
at even levels of planted plane trees with n + 2 vertices is

R HIGy

7’1. (=1 k=1

p(n+2) —1+

forn > 1.

To determine the asymptotic behavior of u(n -+ 2)/(n + 2), we need
the following lemma [5].

LEMMA 5. Let A(z) =Y 7 s an2™ and B(z) = > o, bpz™ be power
series with radii of convergence py > pa, respectively. Suppose that A(x)
converges absolutely at x = p;. Suppose that b, > 0 for all n and that
bn—1/bn approaches a limit b as n — oco. If > 7 c,z™ = A(z)B(z),
then ¢, ~ A(b)by,. O

Now we can state the main result of this section.

THEOREM 6. The expected value p(n + 2) of the independent domi-
nation numbers of planted plane trees with n + 2 vertices is

p(n+2) ~ %(n+2).
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Proof. Recall the equation (3.11) and consider the second term 1/(2—
y) in (3.11). It follows from (3.2) that

1 2x 1

3.19 = .
( ) 2—y 1—+1-4zx+/1—4z
Let 5
x
Alg) = ———
(z) 1—+1-4z
and
B(z) = _.1_
Vv1—4x
so that 1
— = A(z)B
5= = Al)B(a)
Then, we obtain
14+ +/1—4x
Alz) = ————,

2
which has a power series expansion in z with radius of convergence 1/4.
Moreover, this power series converges absolutely at z = 1/4 (see, for
example, [4, p.426]). On the other hand, we obtain

which converges for |z| < 1/4. If we let

by = (zn)a
n
it is easily checked that b,_1/b, — 1/4 as n — oo and that b, > 0 for
all n. If we let

we obtain from Lemma 5 that
1/2n
cn ~ A(1/4)by, = 3 ( n)
and hence from (3.10) that
2
) ()

,u(n+2)n+1 - n+.1+cn

G 1(2n
~ n-}—ld}-i(n>7
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which implies that
1
u(n+2) ~ i(n +2).
This completes the proof. 0

COROLLARY 7. The expected value p(n+2) of the numbers of vertices
at even levels of planted plane trees with n + 2 vertices is

~ %(n+2).

p(n+2)
We know [6] that the expected independence number v(n + 2) of
planted plane trees with n + 2 vertices is

v(in+2) ~ 6180--- (n+2).

It is easy to see that
o (T) < B(T)
for any planted plane tree T. Our result
pln+2)~.5n+2)

is consistent with these two facts.

4. Trivalent trees

A trivalent tree is a planted plane tree in which each vertex has degree
one or three. This restriction on the degrees implies that there must be
an even number of vertices in such a tree.

Let y, denote the number of trivalent trees with n vertices of degree
three (and thus, 2n+ 2 vertices altogether) for n > 0. Clearly, yo = 1. If
n > 1, consider an ordered pair of trivalent trees 77 and 75 with ny and
ng vertices of degree three, respectively. If the roots of these trees are
identified and joined to a new vertex r, the resulting configuration may
be regarded as a trivalent tree T with n; +noe+1 vertices of degree three
that is rooted at the vertex r. Notice that the vertices are not labeled
and that different orderings of the subtree 7} and T yield different trees
T in general. It follows, therefore, that

n—1
Yn =D YiUn-1-
rt
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for n > 1. Thus if
[o.#)
y = y(.’,C) = Z ynmn’
=0

then
(4.1) y =1+ z3°
Hence, we obtain
1 2. /2n\ z"
.2 =—|1—-v1- =
s =g (viE) =2 ()

since y(0) = 1. This, of course, is well-known argument. See [1] or [3].
In the argument above, observe that
(4.3) Ne(T) = 1+ N,(T) + N,(T»),
(4.4) No(T) = =1+ No(T1) + No(T2).
For 1 <k <2n+1,let f, ; and g, 1 denote the number of trivalent

trees T' with n vertices of degree three such that N.(7') = k and N,(T) =
k, respectively. Let

oo 2n+1

(45) F=Fz) = > (Y fast)s
=0 =
00 2’;‘L+11

(4.6) G=G(x,z) = Z ( Z gn,kzk)a:n.
n=0 k=1

It follows by a slight extension of the argument used to establish the
equation (4.1) that

(4.7) F = z+22G?
(4.8) G = z+zl2F?

The factor z is present in the equation (4.7) because of (4.3), and the
factor 27! in the equation (4.8) is present because of (4.4). Notice that

(4.9) F(z,1) =y(z) and G(z,1) =y(z).

THEOREM 8. Let u(2n + 2) denote the expected independent dom-

ination number of the (2;:)7#1 trivalent trees with 2n + 2 vertices and
define

(4.10) M(z) = i w(2n +2) (2”) d

oy n/n+1

T
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Then we have

2 0y
1-2zy 1-—4z2y?

(4.11) M(z) =

Proof. It is easy to see that
(4.12) M(z) = Fy(z,1).

If we differentiate both sides of equations (4.7) and (4.8) with respect
to z, set 2 = 1, and use equations (4.12), (4.9), and (4.1), we obtain

(4.13) M(z) = y + 2zyG:(z, 1),
(4.14) G,(z,1) =2 —y + 2zyM(z).

If we substitute (4.14) for G;(z,1) in (4.13), solve the resulting equation
for M(z), and use (4.1) again, we obtain the required result. d

We know that M (z) is the generating function for the total sums of
the independent domination numbers of trivalent trees. Therefore, using
power series expansion of M (z) in z, we could find directly the expected
value u(2n+2) of the independent domination numbers of trivalent trees
for small n. Actually, it follows from (4.2), (4.11), and the routine use
of Mathematica that

y(z) = 14+z+ 2% +52° + 14z + 422° + 1322° 4 4292
+14302® + 4862z° + 167960 + - - -
and
M(z) = 1+ 3z+6z%+232° + 74z 4 2702° 4 9722°

+3599z7 + 134102% + 504742° + 1911242 + .. .

Table 2 shows the values of p(2n + 2) and p(2n + 2)/(2n + 2). The
entries for n < 4 were verified using the diagrams in [7] for trivalent
trees with up to 10 vertices.

Furthermore, we can derive a reasonably explicit formula for pu(2n+2)
as follows.
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TABLE 2. u(2n + 2) and u(2n +2)/(2n + 2)

n 0 1 2 3 4

u(2n + 2) 1 3 3 4.6  5.2857
p(2n+2)/(2n+2) 5000 .7500 .5000 .5750 .H285
n 5 6 7 8 9

u(2n +2) 6.4285 7.3636 8.3802 9.3776 10.3813

p(2n+2)/(2n+2) 5357 5259 5243 5209 5190

THEOREM 9. The expected value u(2n + 2) of the independent dom-
ination numbers of trivalent trees with 2n + 2 vertices is

n4+1( e~ k26 fom — &
p2n+2) = (27?) {EZR—k< n )

_L”Z”:J (2k + 1)4* =2+ 1))
n—2k+1\ n-+1

forn>1.

Proof. It follows from (4.11) and (3.15) that

2 Yy
1—2ry 1-—4x2y?

[0}

= 22 Zmy)m—yz 49:

m=0

ad k2ktL fon — k
g{zzn—< )
tn/2] k
% +1)4F [0 — 2k + 1\ .,
_Z2n—2k+l< n+1 >}”“

Therefore, by equating the coefficients of ™ in both sides of the equality
above, we have

n In/2] '

(*™) k2HHL fon — & (2k +1)4F [2n -2k +1
2 = — SR
uen ) 0T n+1 ZZn—k n ;JQn—ZIH-l n+1

and obtain the required result. O

M(z) =

Il
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COROLLARY 10. The expected value u(2n + 2) of the numbers of
vertices at even levels of trivalent trees with 2n + 2 vertices is

n+1(e k26t /foan —k
pn+2) = (2$){Z2n—k< n )

_%Z:J (2k +1)4F [2n—2k+1 }
2n—2k+1 n+1
forn = 1.

Now we can state the main result of this section.

THEOREM 11. The expected value p(2n+2) of the independent dom-
ination numbers of trivalent trees with 2n + 2 vertices is

1
p(2n+2) ~ (20 +2).

Proof. Consider the first term 2/(1 — 2zy) of M(z) in (4.11). It is
easy to see from (4.2) that

(4.15) 1_22my Z ( )

n={_

Next, consider the second term y/(1 — 4z2%y?) of M(z) in (4.11). It is
easy to see from (4.2) that

y _1-Vi-4r 2+l -4 1

(4.16) 1—4a2y? ~ 2z 3+4r 1 —4dz
Let
1—+/1~4x 24+ +/1— 4z
Afz) =

2z 3+4x
and

V1-4z’
s0 that y

Since both factors of A(x) have power series expansions which converge
for |z| < 1/4 and converge absolutely at = = 1/4 (see [4, p.426]), A(z)
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converges for |z| < 1/4 and converges absolutely at z = 1/4. On the

other hand, we obtain
[e o]
=== ()
1—4zx r

T

B(z) =

which converges for |z| < 1/4. If we let

by = (271) ’
n

it is easily checked that b,-1/b, — 1/4 as n — oo and that b, > 0 for
all n. If we let

z"
1-— 4:02y ZO En
we obtain from Lemma 5 that

2n
cn ~ A(l/4)b,, = ( o )
and hence from (4.11), (4.15), and (4.16) that

1(2n +2) (2;)1 = 2(?) —cn
~2(7)-(7)

1
u(2n +2) ~ 5(271 + 2).
This completes the proof. O

which implies that

COROLLARY 12. The expected value 11(2n + 2) of the numbers of
vertices at even levels of trivalent trees with 2n + 2 vertices Is

1
p(2n+2) ~ E(Zn +2).

We know [6] that the expected independence number v(2n + 2) of
trivalent trees with 2n + 2 vertices is

v(2n +2) ~ 5857--- (2n + 2).

It is easy to see that

o (T) < B(T)
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for any trivalent tree T'. Our result
w(2n +2) ~ .5(2n + 2)

is consistent with these two facts.
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