REMARKS ON k-FOLD INTEGER-VALUED POLYNOMIALS

VICHIAN LAOHAKOSOL AND ANGKANA SRIPAYAP

ABSTRACT. A polynomial is k-fold integer-valued if itself and its derivatives up to order k are integer-valued. Necessary and sufficient conditions are established for

- (i) polynomials with rational coefficients to be k-fold integer-valued, and for
- (ii) a quotient of two k-fold integer-valued polynomials to be k-fold integer-valued.

1. Introduction

By an integer-valued polynomial we mean a polynomial with rational coefficients which takes integral values at the integers. Denote by $\operatorname{Int}(\mathbb{Z})$ the set of integer-valued polynomials, and by $\operatorname{Int}^{(k)}(\mathbb{Z})$ the set of polynomials which together with their derivatives up to order k are integer-valued, called k-fold integer-valued polynomials. It is well-known. see e.g. Pólya and Szegő [7] or Cahen and Chabert [3] or Narkiewicz [6], that the set $\left\{ \left(\begin{array}{c} x \\ n \end{array} \right); n \geq 0 \right\}$ forms a basis over Z for $\mathrm{Int}(Z)$. Let us call such basis a binomial basis for short. Similar precise results for higher $\operatorname{Int}^{(k)}(\mathbb{Z})$ are known only for $\operatorname{Int}^{(1)}(\mathbb{Z})$, see Brizolis and Straus [2]. However certain related results are known, e.g. Carlitz [4] in 1959 derived a necessary and sufficient condition for polynomials to be in $Int^{(1)}(\mathbb{Z})$ based upon the shape of their coefficients written with respect to the binomial basis. Our first aim is to extend this result to general $Int^{(k)}(\mathbb{Z})$. As these conditions are rather complicated, simpler (yet only) sufficient conditions for $Int^{(k)}(\mathbb{Z})$ are derived. As another consequence we deduce a necessary and sufficient condition for polynomials with shifted binomial basis to be in $Int^{(k)}(\mathbb{Z})$ given that the former ones are. In another

Received March 7, 2001. Revised October 16, 2001.

2000 Mathematics Subject Classification: 11T55, 11T06, 11C08, 13F20.

Key words and phrases: k-fold integer-valued polynomials, binomial basis.

direction, Lind [5] in 1971, also using the binomial basis, proved that for two polynomials in $\operatorname{Int}(\mathbb{Z})$ the values at the integers of one divide that of the other if and only if one polynomial divides the other in $\operatorname{Int}(\mathbb{Z})$. Brizolis [1], using different approach, viz. asymptotic consideration, furthered this result to algebraic number fields. Our second objective is to extend Lind's result to general $\operatorname{Int}^{(k)}(\mathbb{Z})$. Since \mathbb{Z} is a subring of the ring of algebraic integers, our result carries over to any algebraic number field.

2. Coefficients

Using the binomial basis for $\operatorname{Int}(\mathbb{Z})$, Carlitz [4] in 1959 derived a necessary and sufficient condition for polynomials to be in $\operatorname{Int}^{(1)}(\mathbb{Z})$. His result reads:

CARLITZ'S THEOREM. Let
$$f(x) = \sum_{s=0}^{n} a_s \binom{x}{n-s}$$
, $a_s \in \mathbb{Z}$. Then

 $f(x) \in Int^{(1)}(\mathbb{Z})$ if and only if the numbers

$$b_t = \sum_{s=0}^{t-1} (-1)^{t-s-1} \frac{a_s}{t-s}$$
 $(t = 1, ..., n)$ are all integral.

Our first result is a generalization of this theorem to $\mathrm{Int}^{(k)}(Z\!\!\!Z).$

THEOREM 1. Let
$$f(x) = \sum_{s=0}^{n} a_s {x \choose n-s}$$
, and k a nonnegative inte-

ger. Then $f(x) \in Int^{(k)}(\mathbb{Z})$ if and only if all the numbers

(0)
$$a_s$$
 $(s = 0, 1, \dots, n)$

(1)
$$b_t^{(1)} = \sum_{s=0}^{t-1} (-1)^{t-s-1} \frac{a_s}{t-s}$$
 $(t=1,2,\ldots,n)$

(2)
$$b_t^{(2)} = \sum_{s=0}^{t-2} (-1)^{t-s-2} \frac{2a_s H_{t-s-1}}{t-s}$$
 $(t=2,3,\ldots,n)$

(3)
$$b_t^{(3)} = \sum_{s=0}^{t-3} (-1)^{t-s-3} 2a_s \sum_{j=s+2}^{t-1} \frac{H_{j-s-1}}{(t-j)(j-s)}$$
 $(t=3,4,\ldots,n)$

$$(k) \quad b_t^{(k)} = \sum_{s=0}^{t-k} (-1)^{t-s-k} 2a_s \sum_{j_{k-2}=s+k-1}^{t-1} \sum_{j_{k-3}=s+k-2}^{j_{k-2}-1} \cdots \times \sum_{j_1=s+2}^{j_2-1} \frac{H_{j_1-s-1}}{(t-j_{k-2})(j_{k-2}-j_{k-3})\cdots(j_1-s)}$$

$$(t=k, k+1, \ldots, n)$$

are all integral, where $H_r = 1 + \frac{1}{2} + \ldots + \frac{1}{r}$.

Proof. The case k=0 is trivial and Carlitz's theorem above gives the result for the case k=1. Consider the case k=2. Writing

$$f^{(j)}(x) = \sum_{t=j}^{n} b_t^{(j)} \begin{pmatrix} x \\ n-t \end{pmatrix} \ (j=1,2),$$

then, using the identity in Carlitz's Theorem, for $t=2,3,\ldots,n$, we have

$$b_t^{(2)} = \sum_{j=1}^{t-1} \frac{(-1)^{t-j-1}}{t-j} b_j^{(1)}$$

$$= \sum_{j=1}^{t-1} \frac{(-1)^{t-j-1}}{t-j} \sum_{s=0}^{j-1} \frac{(-1)^{j-s-1}}{j-s} a_s$$

$$= \sum_{s=0}^{t-2} \frac{(-1)^{t-s-2}}{t-s} a_s \sum_{j=s+1}^{t-1} \left(\frac{1}{t-j} + \frac{1}{j-s}\right)$$

$$= \sum_{s=0}^{t-2} (-1)^{t-s-2} \frac{2a_s H_{t-s-1}}{t-s},$$

which yields the result for this case. Assume that the result holds for $0,1,\ldots,k-1$ and writing

$$f^{(j)}(x) = \sum_{t=j}^{n} b_t^{(j)} \begin{pmatrix} x \\ n-t \end{pmatrix} \ (j=1,2,\ldots,k),$$

then, using Carlitz's Theorem we have

$$b_t^{(k)} = \sum_{r=k-1}^{t-1} \frac{(-1)^{t-r-1}}{t-r} b_r^{(k-1)} \ (t=k,k+1,\ldots,n).$$

We only need to determine $b_t^{(k)}$. For $t = k, k+1, \ldots, n$ by the induction hypothesis, we have

$$b_{t}^{(k)} = \sum_{r=k-1}^{t-1} \frac{(-1)^{t-r-1}}{t-r}$$

$$\times \left(\sum_{s=0}^{r-k+1} (-1)^{r-s-k+1} 2a_{s} \sum_{j_{k-3}=s+k-2}^{r-1} \sum_{j_{k-4}=s+k-3}^{j_{k-3}-1} \cdots \right)$$

$$\times \sum_{j_{1}=s+2}^{j_{2}-1} \frac{H_{j_{1}-s-1}}{(r-j_{k-3})(j_{k-3}-j_{k-4})\cdots(j_{1}-s)} \right)$$

$$= \sum_{s=0}^{t-k} (-1)^{t-s-k} 2a_{s}$$

$$\times \left(\sum_{r=s+k-1}^{t-1} \sum_{j_{k-3}=s+k-2}^{r-1} \cdots \right)$$

$$\times \sum_{j_{1}=s+2}^{j_{2}-1} \frac{H_{j_{1}-s-1}}{(t-r)(r-j_{k-3})(j_{k-3}-j_{k-4})\cdots(j_{1}-s)} \right),$$

and the result follows.

A simpler, yet only sufficient, condition for $\mathrm{Int}^{(k)}Z$ can easily be deduced. This can be regarded as a partial analogue to the result in the discrete setting due to Carlitz [4], the lemma on p. 298, which says briefly as follows: Let $M_r(x)$ $(r \geq 1)$ be the set of all integer-valued polynomials f(x) such that their differences $\Delta^k f(x)$ are integer-valued for $1 \leq k \leq r$. Put $L_n^{(r)} = \mathrm{lcm}(s_1 s_2 \dots s_r)$, where the least common multiple is taken over all products of integers s_j subject to $s_1 + \dots + s_r \leq n$, $s_j \geq 1$. Carlitz's result states that for $a \in \mathbb{Z}$, we have $a \binom{x}{n} \in M_r(x)$ if and only if $L_n^{(r)}|a$.

Theorem 2. Let
$$f(x)=\sum_{s=0}^n a_s\binom{x}{n-s}$$
, k a nonnegative integer,
$$f^{(k)}(x)=\sum_{t=k}^n b_t^{(k)}\binom{x}{n-t}$$

where

$$b_t^{(k)} = \sum_{s=0}^{t-k} (-1)^{t-s-k} 2a_s \sum_{j_{k-2}=s+k-1}^{t-1} \sum_{j_{k-3}=s+k-2}^{j_{k-2}-1} \cdots$$

$$\times \sum_{j_1=s+2}^{j_2-1} \frac{H_{j_1-s-1}}{(t-j_{k-2})(j_{k-2}-j_{k-3})\cdots(j_1-s)}$$

and $L_t = \text{lcm}(1, 2, ..., t)$. If

$$(0) \quad a_0 \in \mathbb{Z},$$

$$t \mid a_0 \qquad (t = 1, 2, \dots, n),$$

$$tL_{t-1} \mid 2a_0 \qquad (t = 2, 3, \dots, n),$$

$$(t - 2)2L_1, (t - 3)3L_2, \dots, 1(t - 1)L_{t-2} \mid 2a_0 \qquad (t = 3, 4, \dots, n),$$

$$\vdots$$

$$(t - j_{k-2})(j_{k-2} - j_{k-3}) \dots (j_2 - j_1)j_1L_{j_1-1} \mid 2a_0 \quad (t = k, k+1, \dots, n),$$

$$(k - 1 \le j_{k-2} \le t - 1, k - 2 \le j_{k-3} \le j_{k-2} - 1, \dots, 2 \le j_1 \le j_2 - 1).$$

$$(1) \quad a_{1} \in \mathbb{Z},$$

$$t-1 \mid a_{1} \qquad (t=2,3,\ldots,n),$$

$$(t-1)L_{t-2} \mid 2a_{1} \qquad (t=3,4,\ldots,n),$$

$$(t-3)2L_{1}, (t-4)3L_{2},\ldots,1(t-2)L_{t-3} \mid 2a_{1} \qquad (t=4,5,\ldots,n),$$

$$\vdots$$

$$(t-j_{k-2})(j_{k-2}-j_{k-3})\ldots(j_{2}-j_{1})(j_{1}-1)L_{j_{1}-2} \mid 2a_{1}$$

$$(t=k+1,k+2,\ldots,n),$$

$$(k \leq j_{k-2} \leq t-1,k-1 \leq j_{k-3} \leq j_{k-2}-1,\ldots,3 \leq j_{1} \leq j_{2}-1).$$

$$\vdots$$

(n) $a_n \in \mathbb{Z}$, then $f(x) \in \operatorname{Int}^{(k)}(\mathbb{Z})$.

Proof. The result is trivial for k = 0. By Carlitz's Theorem, it is true for k = 1. Assume that the result holds for $0, 1, \ldots, k - 1$. Since

$$f^{(k)}(x) = \sum_{t=k}^{n} b_t^{(k)} \binom{x}{n-t}$$

where

$$b_t^{(k)} = \sum_{s=0}^{t-k} (-1)^{t-s-k} 2a_s \sum_{j_{k-2}=s+k-1}^{t-1} \sum_{j_{k-3}=s+k-2}^{j_{k-2}-1} \cdots$$

$$\times \sum_{j_1=s+2}^{j_2-1} \frac{H_{j_1-s-1}}{(t-j_{k-2})(j_{k-2}-j_{k-3})\cdots(j_1-s)}$$

and the denominator of H_j is L_j , then $b_t^{(k)} \in \mathbb{Z}$ if the following divisibility conditions are satisfied

•
$$(t - j_{k-2})(j_{k-2} - j_{k-3}) \dots (j_2 - j_1)j_1L_{j_1-1} \mid 2a_0$$

 $(k-1 \le j_{k-2} \le t-1, k-2 \le j_{k-3} \le j_{k-2}-1, \dots, 2 \le j_1 \le j_2-1),$

•
$$(t - j_{k-2})(j_{k-2} - j_{k-3}) \dots (j_2 - j_1)(j_1 - 1)L_{j_1-2} \mid 2a_1$$

 $(k \le j_{k-2} \le t - 1, k - 1 \le j_{k-3} \le j_{k-2} - 1, \dots, 3 \le j_1 \le j_2 - 1),$

:

•
$$(t - j_{k-2})(j_{k-2} - j_{k-3}) \dots (j_2 - j_1)(j_1 - t + k)L_{j_1 - t + k - 1} \mid 2a_{t-k}$$

 $(t - 1 \le j_{k-2} \le t - 1, \ t - 2 \le j_{k-3} \le j_{k-2} - 1,$
 $\dots, \ t - k + 2 \le j_1 \le j_2 - 1).$

This set of conditions is equivalent to (0), (1), ..., (n), and the proof is complete.

The following example, for the case k=1, confirms that the conditions of Theorem 2 are merely sufficient. Let

$$f(x) = 30 \left(\begin{array}{c} x \\ 5 \end{array} \right) + 6 \left(\begin{array}{c} x \\ 4 \end{array} \right) + 3 \left(\begin{array}{c} x \\ 3 \end{array} \right) + \left(\begin{array}{c} x \\ 2 \end{array} \right).$$

Then

$$f'(x) = b_1^{(1)} \left(\begin{array}{c} x \\ 4 \end{array} \right) + b_2^{(1)} \left(\begin{array}{c} x \\ 3 \end{array} \right) + b_3^{(1)} \left(\begin{array}{c} x \\ 2 \end{array} \right) + b_4^{(1)} \left(\begin{array}{c} x \\ 1 \end{array} \right) + b_5^{(1)} \left(\begin{array}{c} x \\ 0 \end{array} \right),$$

where, by Carlitz's theorem, $b_1^{(1)} = 30, b_2^{(1)} = -9, b_3^{(1)} = 10, b_4^{(1)} = -6, b_5^{(1)} = 5$, and so $f(x) \in \text{Int}^{(1)}(\mathbb{Z})$. Yet $a_0 = 30$ is not divisible by all t in $\{1,2,3,4,5\}$ implying that f(x) does not satisfy the condition(1) of Theorem 2.

As another application of Theorem 1, we deduce a necessary and sufficient condition for polynomials with *shifted* binomials to be in $Int^{(k)}(\mathbb{Z})$,

given that the former ones are. Results of this kind were used repeatedly in the work of Brizolis and Straus [2] in their construction of an explicit binomial basis for $Int^{(1)}(\mathbb{Z})$.

COROLLARY Let
$$f(x) = \sum_{s=0}^n a_s \binom{x}{n-s} \in \operatorname{Int}^{(k)}(\mathbb{Z}), \ k$$
 a nonnegative integer, and let $g(x) = \sum_{s=0}^{n+1} a_s \binom{x}{n+1-s}$. Then $g(x) \in \operatorname{Int}^{(k)}(\mathbb{Z})$ if and only if all the numbers

(0)
$$g(0) = a_{n+1}$$
,

(1)
$$g'(0) = \sum_{s=0}^{n} (-1)^{n-s} \frac{a_s}{n+1-s}$$
,

(2)
$$g''(0) = \sum_{s=0}^{n-1} (-1)^{n-s-1} \frac{2a_s H_{n-s}}{n+1-s},$$

(3)
$$g'''(0) = \sum_{s=0}^{n-2} (-1)^{n-s-2} 2a_s \sum_{j=s+2}^{n} \frac{H_{j-s-1}}{(n+1-j)(j-s)},$$

:

$$(k) \quad g^{(k)}(0) = \sum_{s=0}^{n+1-k} (-1)^{n+1-s-k} 2a_s \sum_{j_{k-2}=s+k-1}^{n} \sum_{j_{k-3}=s+k-2}^{j_{k-2}-1} \cdots$$

$$\times \sum_{j_1=s+2}^{j_2-1} \frac{H_{j_1-s-1}}{(n+1-j_{k-2})(j_{k-2}-j_{k-3})\cdots(j_1-s)}$$

are integral, where $H_r = 1 + \frac{1}{2} + \ldots + \frac{1}{r}$.

Proof. The case k=0 is trivial. Consider the case k=1. Writing

$$f'(x) = b_1 \begin{pmatrix} x \\ n-1 \end{pmatrix} + b_2 \begin{pmatrix} x \\ n-2 \end{pmatrix} + \ldots + b_{n-1} \begin{pmatrix} x \\ 1 \end{pmatrix} + b_n,$$

$$g'(x) = B_1 \left(egin{array}{c} x \ n \end{array}
ight) + B_2 \left(egin{array}{c} x \ n-1 \end{array}
ight) + \ldots + B_n \left(egin{array}{c} x \ 1 \end{array}
ight) + B_{n+1},$$

by the identities found in Theorem 1, we get, for $t=1,\,2,\ldots,\,n$ and $T=1,\,2,\,\ldots,n+1$ that

$$b_t = \sum_{s=0}^{t-1} (-1)^{t-s-1} \frac{a_s}{t-s}$$

and

$$B_T = \sum_{s=0}^{T-1} (-1)^{T-s-1} \frac{a_s}{T-s}.$$

Note that $b_t = B_t$ for t = 1, 2, ..., n, i.e. the coefficients of f'(x) are the same as those of g'(x) except $B_{n+1} = g'(0)$. If $g(x) \in \operatorname{Int}^{(1)}(\mathbb{Z})$, then $g'(0) \in \mathbb{Z}$. Conversely, assume that $g'(0) = B_{n+1} \in \mathbb{Z}$. Since $f'(x) \in \operatorname{Int}(\mathbb{Z})$, then $B_1 = b_1, ..., B_n = b_n$ are all integral. Observe that g'(x) is a sum of terms of the form $B_i \binom{x}{n+1-i}$, with $B_i \in \mathbb{Z}$, then $g'(x) \in \operatorname{Int}(\mathbb{Z})$. Hence $g(x) \in \operatorname{Int}^{(1)}(\mathbb{Z})$, proving the result for k = 1. The proof of the general case follows readily by induction.

Let us mention in passing that all results in this section are still valid if the ring of rational integers \mathbb{Z} is replaced by the ring of p-adic integers.

3. Quotients

In 1971, Lind [4], see also Brizolis [1], proved the following interesting result to the effect that for two polynomials in $Int(\mathbb{Z})$ the values at the integers of one divide that of the other if and only if one polynomial divides the other in $Int(\mathbb{Z})$.

LIND'S THEOREM. Suppose that f(x), $g(x) \in Int(\mathbb{Z})$. Then $f(n) \mid g(n)$ for all $n \in \mathbb{N}$ if and only if $\frac{g(x)}{f(x)} \in Int(\mathbb{Z})$.

We now generalize this result.

THEOREM 3. Suppose that $f(x), g(x) \in Int^{(k)}(\mathbb{Z})$, k a nonnegative integer. Then $\frac{g(x)}{f(x)} \in Int^{(k)}(\mathbb{Z})$ if and only if for all $n \in \mathbb{N}$, we have

(0)
$$f(n) \mid g(n)$$
,
(1) $f(n) \mid \left(g'(n) - \frac{g(n)}{f(n)}f'(n)\right)$,

:

.
$$(k) f(n) | \left(g^{(k)}(n) - \sum_{s=0}^{k-1} {k \choose s} \left(\frac{g}{f}\right)^{(s)}(n) f^{(k-s)}(n)\right).$$

Proof. Let $H(x) = \frac{g(x)}{f(x)}$. We proceed by induction on k. By Lind's theorem, the result is true for k = 0. Suppose the result holds for $0, 1, \ldots, k-1$. Assume that $H(x) \in \operatorname{Int}^{(k)}(\mathbb{Z})$. By induction hypothesis, we have $H^{(s)}(x)$ and $f^{(k-s)}(x)$ both belong to $\operatorname{Int}(\mathbb{Z})$ for $0 \le s \le k-1$. Thus

$$g^{(k)}(x) - \sum_{s=0}^{k-1} {k \choose s} H^{(s)}(x) f^{(k-s)}(x) \in \text{Int}(\mathbb{Z}).$$

Since $H^{(k)}(n)=\frac{g^{(k)}(n)-\sum\limits_{s=0}^{k-1}\left(\begin{array}{c}k\\s\end{array}\right)H^{(s)}(n)f^{(k-s)}(n)}{f(n)}$ and f(n) are both integral, then

$$f(n) \Big| \Big[g^{(k)}(n) - \sum_{s=0}^{k-1} \binom{k}{s} H^{(s)}(n) f^{(k-s)}(n) \Big].$$

Conversely, let the conditions (0)-(k) be fulfilled and assume the result holds for $0, 1, \ldots, k-1$. Thus $H(x) \in \operatorname{Int}^{(k-1)}(\mathbb{Z})$, and so $H^{(k-1)}(x) \in \operatorname{Int}(\mathbb{Z})$, yielding

$$H^{(k)}(x)f(x) = g^{(k)}(x) - \sum_{s=0}^{k-1} \binom{k}{s} H^{(s)}(x)f^{(k-s)}(x) \in \text{Int}(\mathbb{Z}).$$

By (k) and Lind's Theorem, we deduce that $H^{(k)}(x) \in \text{Int}(\mathbb{Z})$, as to be proved.

The following example, for the case k = 1, shows that the converse of Theorem 3 is not generally true if one of the conditions, the condition

(1) in this case, does not hold. Take $g(x)=60\left(\begin{array}{c}x\\6\end{array}\right), f(x)=2\left(\begin{array}{c}x\\2\end{array}\right).$ Then

$$\frac{g(x)}{f(x)} = \frac{(x-2)(x-3)(x-4)(x-5)}{4 \cdot 3},$$

and so $\frac{g(n)}{f(n)} \in \mathbb{Z}$ for all $n \in \mathbb{N}$. But at $x = 2, g'(2) - \frac{g(2)}{f(2)}f'(2) = -1$

which is not divisible by f(2) = 2. Next, we show that $\frac{g(x)}{f(x)} \notin \operatorname{Int}^{(1)}(\mathbb{Z})$.

Suppose otherwise, then $\frac{g(x)}{f(x)}$ is polynomial of degree 4 in $Int^{(1)}(\mathbb{Z})$.

Using the binomial basis of $Int^{(1)}(\mathbb{Z})$ in Brizolis and Straus[2], we can write

where
$$\frac{g(x)}{f(x)} = A \left[6 \left(\begin{array}{c} x \\ 4 \end{array} \right) + \left(\begin{array}{c} x \\ 2 \end{array} \right) \right] + B \cdot 6 \left(\begin{array}{c} x \\ 3 \end{array} \right) + C \left(\begin{array}{c} x \\ 2 \end{array} \right) + Dx + E,$$
 where A, B, C, D and E are integral. Comparing the leading coefficients,

we get $A = \frac{1}{3}$ which is a contradiction.

ACKNOWLEDGEMENT. We wish to thank the referee for many useful comments.

References

- D. Brizolis, On the ratios of integer-valued polynomials over any algebraic number field, Amer. Math. Monthly 81 (1974), 997-999.
- D. Brizolis and E.G. Straus, A basis for the ring of doubly integer-valued polynomials, J. Reine Angew. Math. 286/287 (1976), 187-195.
- P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Math. Surveys & Monographs Amer. Math. Soc. 48 (1997).
- L. Carlitz, A note on integral-valued polynomials, Indag. Math. 21 (1959), 294-
- D. A. Lind, Which polynomials over an algebraic number field map the algebraic integers into themselves?, Amer. Math. Monthly 78 (1971), 179-180.
- W. Narkiewicz, Polynomial Mappings, Lecture Notes in Math. #1600, Springer, Berlin, 1995.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Vol. II, Springer, New York, 1976.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KASETSART UNIVERSITY, BANGKOK 10900, THAILAND

E-mail: fscivil@nontri.ku.ac.th fscianr@nontri.ku.ac.th