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HARDY’S INEQUALITY RELATED
TO A BERNOULLI EQUATION

JUNG-S00ON HYUN AND SANG Dong KiMm

ABSTRACT. The weighted Hardy’s inequality is known as

/ Ju(z)|Pr(z)dz < C’/ [u'(z)[Ps(z)dw

where —00 < a < b < co and 1 < p < oo. The purpose of this
article is to provide a useful formula to express the weight r(z) in
terms of s(z) or vice versa employing a Bernoulli equation having
the other weight as coefficients.

1. Introduction

The classical Hardy’s inequality [7] states that for 1 < p < oo and
€ 75 pP— ]-:

(1.1) /0 " (@) PrtPds < (—L—Y /0 W (@) Patda

le —p-+1]

provided u(0) =0 for € < p~1 and u(o0) = 0 for € > p— 1. For singular
value € = p — 1 for the Hardy’s inequality (1.1), Kadlec and Kufuer [6]
showed

1 1
(1.2) / u(z)P |logal Pdz < C, / ()PP~ Ldz.
0 0

This inequality asks for which weights »(z) and s(z) the following in-
equality

b b
(1.3) / |u(:c)|pr(:l:)d:c§C/a [u/(z)[Ps(z)dx
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holds. For this question, Muckenhoupt [8] showed that the formula (1.3)
holds if and only if

4 s ( /t ” |r(m)|pd:c>l/p ( /0 t |s(:c)|qda:)1/q _ K <oo

1
and K < C < Kpr q% where % ~+ % = 1. In a more general setting,
Gurka [5] gave a necessary and sufficient condition for the weights r(z)
and s(z), for which

(1.5) | /0 " (@) Pr(z)ds < C /O " ()75 () dz

holds for 1 < p < ¢ < oo. Kufner and Triebel [7] also gave explicit
formulae for r(z) and s(z) for the case p = ¢. In this article, we derive
a simple formula such as

r(z) = s(m)_ﬁ (c+ K—(p}—_l) /s(m)_ﬁdz) _P,

which is the solution of a Bernoulli equation (see (2.4)), to find one
weight function for a given other weight function. An application of
such a formula can be used in a process showing coercivity of variational
formulation arisen in spectral method (see [1], [4]) in an area of numerical
partial differential equations. For this purpose, we use the formula above
with Jacobi weights s(z) = (1 — 2)%(1 — z)®, (a,b > —1) to set Hardy’s
inequality with corresponding weights, r(z) in this last section. For
—1 < a,b < 1, the Hardy’s inequality is found in [3, p.91] for example.

2. Hardy’s inequality and a Bernoulli equation

In this section, we relate two weights r(z) and s(z) in the weighted
Hardy’s inequality (1.3) in terms of a Bernoulli equation, that is, one
weight is a solution of a Bernoulli equation with coefficients as other
welght.

PROPOSITION 2.1. Let 1 < p < o0 and —o0 < a < b < oo. Suppose
r(z) > 0 and s(z) > 0. Assume

b
/ |f(x)Ps(z)dx < oo,
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Then

2y / ([ 1) |dt) x)dw)l/piKp(Lblf(x)lps(x)dw)l/p

holds if

b
(2.2) r(z)" 5 s(n)"F / r(B)dt = K < oo,
el
where K is a constant.

Proof. For each ¢ > 0 define

A = | * o)l

where f.(t) = f(t) for a+ € <z < b— e and 0 otherwise. Since

Ry = [ wpyi=p [ Ropso

by using Fubini’s theorem and Holder’s inequality and (2.2) we have

b
F(z)Pr(z)dz

a

—p / F(tf [ £.(8)|r(2)dtde

:/ ()P f(z 1/ t)dtdz
=» b [(ﬂ(z)r(m)a)p (eels@)? ) i)™ )75 [ br(t)dt} d

<Kp</ Fo(x)Pr( ;v)) (/ | fe z)}ps(m)dx>l

where 1 5+ % = 1. Hence this implies

Finally, applying the Dominated Convergence Theorem yields (2.1). [

From the relation (2.2), it is obvious to find s(z) for given r(z) and
K. Conversely if s(x) and K are given, we can find r(z) in the following
way:
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THEOREM 2.2. For a given weight s(z) and a constant K, if r(z)
satisfy (2.2), then r(z) is given by

23)  r(z)=s(z) 7T (c+ ﬁ/s(az)‘p_ﬁldm)_p

which is a solution of a Bernoulli equation,

1 1 _1 141
— (ogs(a))/ (@) = =T s(@) " #r(@) ">

(2.4) r'(z) +
where ¢ is an arbitrary constant.

Proof. By differentiating (2.2), we have a nonlinear equation (2.4)
which is of Bernoulli equation and it is well known that the general
solution is given by (2.3). O

The formula (2.3) provides the way to get other weight for a given
weight in the Hardy’s inequality (1.3). As applications of the above
theorem, we present two corollaries, which imply the classical case (1.1)
and the singular case (1.2) by choosing particular weight s(z) in the
formula (2.3).

COROLLARY 2.3. Let 1 < p < o0, and € # p— 1. Let u(z) be a
function differentiable almost everywhere on (0,00) and such that

ool
/ |v/ (z)|Pzfdz < oo.
0
Moreover, let u(0) = 0 for e < p—1 and u(co) =0 fore > p—1. If
s{x) = z¢, then the classical inequality (1.1) holds.

Proof. Consider the case ¢ < p— 1. By choosing f(z) = v/(z) in (2.1)
and ¢ =0 in (2.3), r(z) is given by

(K—@“—%'i?))_pf""

Putting r(x) into (2.1) we have

(/ODO |u(:1:)|1’a:€_1’dx)% < F% (/OOO |u’(:c)|pz€da:>%

For the case € > p—1, the same argument works with F.(z) = f | fe(t)|dt.
Hence, combining these two cases yields (1.1). a

COROLLARY 2.4. Let 1 < p < co, and u(0) = 0. If s(x) = 2P~1, then
the classical inequality for the singular case (1.2) holds for a = 0 and
b=1.
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Proof. For s(z) = zF~1, r(x) in (2.3) is now (Kﬁi)_p 1|log x| 7,
which is a singular case (1.2). O

3. Hardy’s inequalities with Jacobi weights

In this section, we take Jacobi weights w(z) = (1—x)*(1+2)°, (a, b >
—1) as an application due to the concise formula (2.3) for the corre-
sponding Hardy’s inequalities used in spectral method, which is one of
very accurate methods to approximate a solution for partial differential
equation numerically, (see [1, 4]). For —1 < a,b < 1, the following result
(3.2) coincides with that in [3, p.91] and [2, p.378] for the first kind
Chebyshev weight o = b = —%, but we present Hardy’s inequality for a
general Jacobi weights (—1 < a, b < oo) in the following theorem using
a Bernoulli equation (2.4). Let p = 2 and s(z) = (1 — z)® on an interval
(—1,1). By Theorem 2.2 when ¢ = 0, r(z) is given by

(K(1-a)?(1~2z)*2 ~1<a<l1, a>1,
(3.1) r(z) =
Kzl%m (log(1 — )72, a =1,

and we may have, for s(z) = (1 + z)°,

(K(1—a)2(1+2)"2, ~1<b<l, b>1,
r(z) =

Kziﬁlr_x (log(1+z) 2 b=1.

Note that for such pairs of »(z) and s(z), (2.2) is satisfied. Define a
weight w1 (z) = r4(z)7rp(x) where
(1—x)2 ~l<a<l, a>1,
ra(e) =
5 (log(1-2)) 7%, a=1,
and
(1+2)"2 -1<b<1, b>1,
ro(z) =

2 (log(l+z)) ™2 b=1.

Let Hy, , = {u € L?(—1,1)] f_ll u(z)*w(z)dr < oo, f_ll [/ (2)|Pw(z)dz <
oo, u(—1) = u(l) = 0}.
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THEOREM 3.1. Let wy(z) = (1 — 2)*(1 + z)® where a > —1 and
b > —1. Then for all w € H.__ we have the following Hardy’s inequality

wa,0

1 1
(3.2) /1 w(z)?wy (@)de < C’/_l v (2)*ws (z)dz

where wy (z) is defined above with suitable choice depending on a and b,
and C = 4max{m7 M, (1 —b)"2,m; ' M,(1 — a)~2} for a,b # 1 and the
constant C' will not contain the term (1 —a)~2 or (1 —b)~2 for the case
a =1 or b= 1. The constants m,, M,, my and M, are defined below.

Proof. For a,b # 1, applying Proposition 2.1 into two weights 7(z)
and s(z) in (3.1)
2

/0 Cw(@)ro(z)ds = (K(1—a))? /0 1 ( / 1u’(s)ds) r(z)da

1
4(1 - a)_2/0 W (z)%(1 — z)%dx

A

[

1
4my (1 - a)_2/0 v (2)%(1 — 2)*(1 + x)°dx

since my ' (1 +z)® > 1 on [0,1] where mp = min(1,2%). A similar argu-
ment shows
0 0
/ u(z)?ry(z)de < 4m (1 — b)‘2/ u'(2)2(1 — 2)*(1 + z)%dx
—1 -1
so that the result (3.2) now follows from
1

1 0
/ u(z)?r(z)de < M, / u(z)?ry(2)de + Mb/ u(z)*ro(x)da
-1 J-1 0

where M, = max(1,2%) and M}, m, are defined analogously. The proof
for the case a =1 or b =1 is same. O
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