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h~-STABILITY OF PERTURBED
VOLTERRA DIFFERENCE SYSTEMS

Sunag Kyu CHor, NauM Jip Koo, AND YooN HOE Goo

ABSTRACT. We discuss the h-stability of perturbed Volterra dif-
ference systems by means of the resolvent matrix and discrete in-
equalities.

1. Introduction

Medina and Pinto [8-10] extended the notion of exponential stabil-
ity to a variety of reasonable difference systems called h-systems. The
new concept of stability (called h-stability) permits to obtain a uniform
treatment for the concept of stability in difference systems. Also, it
allows to get asymptotic formulae for weakly stable difference systems.

The stability problem for Volterra difference systems was studied by
Elaydi [5], Elaydi and Murakami [6], Raffoul [11], Sheng and Agarwal
[12], Zouyousefain and Leela [13], Choi and Koo [3], and others.

Let A(n) and K (n, s) be m x m nonsingular matrices whose elements
are real functions defined on N(ng) = {ng,nop +1,--+ ,no +k,---} and
N(ng) x N(ng), respectively. Here ng is a fixed nonnegative integer and
k is a positive integer.

We consider the linear Volterra difference system

Az(n) =z(n+1) — z(n)

(1) = A(n)z(n) + i K(n,s)z(s), z(ng) = o,

S="Ng
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and its perturbation

(@) Ayn) = Amy) + 3 K, 8)y(s) + F(n), ylno) = o,

S=n.p

where z(n) and y(n) are vectors in the m-dimensional real Euclidean
space R™, and F(n) is a vector function defined on N(ng). Let z(n) =
z(n,no, zo) and y(n) = y(n, ng,yo) be the unique solutions of (1) and (2)
satisfying the initial conditions z(ng) = z¢ and y(ng) = yo, respectively.
The symbol | - | will be used to denote any convenient vector norm.

In this paper we discuss the h-stability of perturbed Volterra differ-
ence systems :

Ay(n) = A@my(n) + S K, $)u(s) + gl y(n))

s=mg

and

n—1

Ly(n) = Aln)y(n) + > [K(n,s)y(s) + G(n, s,y(s))]

S="g

+ F(n,y(n)),

where g : N(np) x R™ — R™ is a vector function satisfying g(n,0) =
0, n > ng and F(n,z) = fol[fm(n,é)m) — fz(n,0)]d0 - z, G(n,s,x) =
fol [9z(n, s,26) — g=(n,s,0)]db - x.
For this purpose, we use the resolvent matrix and discrete inequalities.
We recall definitions of stability notions in [7, 10].

DEFINITION 1.1. The zero solution of (1) is said to be
(S) stable if given £ > 0 and ng > 0, there exists § = d(g,ng) > 0
such that |zg| < & implies |z(n, ng, zg)| < £ for all n > ng.
(US) uniformly stable if it is stable and § can be chosen independent
of ng.
(ULS) wuniformly Lipschitz stable if there exist M > 0 and ¢ > 0 such
that

[2(n,no,To)| < M|zo| whenever [zo] < J and n > ng > 0.

(ES) exponentially stable if there exist § > 0,a > 0 and n € (0,1) such
that |zo| < § implies |z(n, ng, zo)| < alzg|n™ ™.
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DEFINITION 1.2. System (1) is called an h-system around the null
solution, or more briefly an h-system, if there exist a positive function
h :N(ng) — R and a constant ¢ > 1 such that

|z(n, ng, zo)| < c|mo|h(n)h"1(n0), n > ng

for |2o| small enough (here A1 (n) = z/5).

If h is a bounded function, then an h-system permits the following
types of stability:

The zero solution of system (1), or more briefly system (1), is said to
be

(hS) h-stable if ¢ > 1, § exist as well as a positive bounded function
h: N(ng) — R such that

|[z(n, no, x0)| < cwolh(n)h ™ (ng), n 2= ng

for |xg| <4,
(GhS) globally h-stable if system (1) is hS for every z; € D, where
D C R™ is a region which includes the origin.

The various notions about hS given by Definition 1.2 include several
types of known stability properties as uniform stability, uniform Lip-
schitz stability and exponential stability. See [2-4, 8-10]. Also, some
examples about hS for difference systems are presented in [2, 10].

DEFINITION 1.3. A function w : R* — R™ is said to be of the class
Fif
(i) w(u) is nondecreasing and continuous for u > 0 and positive for
u > 0,
(ii) there exists a nonnegative function r (multiplier function) de-
fined on (0, ) such that

w(au) € rla)w(u) for @ >0, u >0,

(i) limg—osr 22 exists.

2. Main results

For our discussion we need the following lemmas. The first lemma
is a result corresponding to Fubini’s theorem, which can be proved by
induction.
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LEMMA 2.1 ([13, Lemma 2.1]). Let L(n, s), K(n,s) be mxm matrices
defined for s,n > ng such that L and K are zero matrices for s,n < ny.
Then the relation

n—1 s—1 — n—1
ZL(n,s+1) Z K(s,0)x Z Z L(n,o+ 1)K (0, s)x(s)
5= a=ng s=ngp =8+

holds, where z : N(ng) — R™ is a vector function defined on N(ny).

The resolvent matriz L(n,s) of (2) can be defined as the unique so-
lution of the matrix difference system

L(n,s+1) — L(n,s) + L(n,s + 1)A(s)

(3) n—1
+ ) Ln,o+1)K(o,5) =0, n>s

g=s+1

with L(n,n) = I, the identity matrix, (see Theorem 2.1 of [9]). We can
obtain the representation of the solution y(n,ng,yo) of (2) with respect
to the resolvent matrix in the following :

LEMMA 2.2 ([13, Theorem 2.2]). The unique solution y(n,ng,yo) of
(2) with y(no,no,0) = yo is given by

n—1

(4) y(n, no,yo) = L(n, no)yo + Z L(n,s +1)F(s).

s=ng

Proof. Let y(n) =y(n,ng,yo). Setting p(s) = L(n, s)y(s), we have
Ap(s) = [L(n,s + 1) — L(n, 8)]y(s) + L(n, s + Dy(s + 1) — y(s)]

) = [L(n,s+1) — L(n,s) + L(n,s + 1)A(s)]y(s)
+ L(n,s+ 1)( z_: K(s,o)y(o) + F(s))

Summing both sides of (5) from ng to n — 1, we obtain
L(n,n)y(n) = L(n,m0)y0
n=—1
= [L(n,s+1) — L(n,s) + L(n,s + 1) A(s)

n—1 n—1

Z (n,o0 + 1)K (o, )y(5)+ZL(n,5+1)F(S),

g=s+ E=TL0)
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by Lemma 2.1 and system (3). Thus we have the formula (4). 0

The following lemma obtained by Medina in [9, Theorem 7] shows
one condition under which a linear Volterra difference system (1) is an
h-gystem.

LEMMA 2.3. The linear Volterra difference system (1) is an h-system,

if and only if, there exist a constant ¢ > 1 and a positive function
h :N(ng) — R such that

|L(n,ng)| < ch(n)h™1(ng), n > ng,
where L(n,ng) is the resolvent matrix of system (2).

REMARK 1. For the trivial solution z = 0 of (1) we obtain the
equivalence of stability properties

US < ULS <= GhS <= hS
by Lemma 2.3.

Now, we consider the perturbed system

n—1

(6) Ly(n) = An)y(n) + Y K(n,8)y(s) + g(n,y(n))

A=Tp

of (1), here g : N(ng) xR™ — R™ is a vector function satisfying g(n,0) =
0 for all n > ny.

THEOREM 2.4. Assume that

(i) system (1) is an h-system,
(ii) the perturbing term g satisfies that

lg(n,y)| < An)w(|yl),

where w is of the class F with the corresponding multiplier
function r, and X : N(ng) — R™ satisfies A(n) r(h(n)h~*(ng))
h_l(n -+ ].) < ll(N(’)’ZO))
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Then every solution y(n) = y(n,no, yo) of (6) satisfies
ly(n,n0, yo)| < Kh(n)h™ (ng), n > ng,

where K is a positive constant.
Proof. By Lemma 2.2, the solution y(n) of (6) is given by

n—1

y(n) = L(n,mo)yo + Y L(n,s+1)g(s,y(s)),

s=np

where L(n, s) is the resolvent matrix of system (2). Then, in view of the
assumptions and Lemma 2.3, we have the following inequality :

n—1

ly(m)| < [L(n,no)llyo| + > |L(n,s + 1)]lg(s, y(s))]

n—1

< ch(mh™ (no)lyol + 3 ch(mh™ (s + DA w(ly(s))).

5="0

Thus we obtain

Put u(n) = An]_g(%(@_) Then, by the discrete Bihari inequality in. [7], we

have

() < A (00) W [Welyol) + ¢ 3 AG3)], 2 o,

s=rq

where A(n) = )‘(”)T(Z((gfl_)l("m)). Hence we obtain

ly(n)| < Kh(n)h™" (o),
where K = WL [W (clyol) + 3.2, A(s)] is a positive constant. [

Remark 2 ([8]). In Theorem 2.4, we assume that |yp| is small enough

and
W(0+) = oo,
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where W(u) = [ 45 4 > 0. Then the inverse function W=*(v) is

defined for v € (u(;), go(if where &y is small enough. For instance, if we
let w(u) = w”,v > 1 and qb( ) W=W(s) + a],s > 0,a > 0, then
#(0+) = 0 follows from fo w(ey = oo Thus, if s is small enough,
then there exists a positive constant M > 1 such that ¢(s) < Ms. This
observation leads the following corollary.

Corollary 2.5. The zero solution y = 0 of (6) is hS if all conditions of
Theorem 2.5 and f0+ T = oo hold.

Example. To illustrate Theorem 2.4, we consider the Volterra differ-
ence equation

(V) Az(n) =2z(n) + ni 2" 7%x(s), z(ng) = xzo

&=T0

and its perturbation with the same initial value

(P) Ay(n) Z 2"*y(s) + g(n, y(n)),

S=MNg

where g satisfies

l9(n, y)[ < A(n)w(|y])-
If w(u) =u7, v > 1and AMn)h?(n)h~(n+1) € [;(N(ng)), then system
(P) is an h-system.

Proof. Any solution x(n, ng, zq) of (V) through the initial point z(ng,
ng, o) = Tg is given by

z .
z(n,no, To) = ?0[1 +2-4"77]
= L(n,ng)zo,

g . IL—ILO =
) = 2L — n > ng. Then we obtain

where L(n,ng
|z(n, ng, xo)| < 47770 |2q],

where h(n) = 4". Thus (V) is an h-system. In the proof of Theorem

2.4, if we let u(n) = % then we have

ly(n)| < h(n)h™" (ng)W =1 [W (clyo) Z
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where A(n) = ;Z‘é:‘_ol)))\(n)(}?(m)))w. Therefore, by the discrete Bihari

inequality in [7], we obtain

[y(n)] < cMh(n)h™" (no)lyol,  n = no,

since W= {W (clyo|)+c> o, A(s)] < Mc|yg| for some positive constant
M > 1. |

Now, we consider the nonlinear Volterra difference system

M Ba) = fn @) + Y g5 z(s)), wne) = z0,

&=Tnp

where f : N(ng) x S(p) — R™ and g : N(ng) x N(ng) x S(p) — R™ with
f(n,0) =0, g(n,s,0) = 0, are continuous in z € S(p), S(p) = {z €
R™ : |z| < p,p > 0}. Moreover, we assume that f,, g, exist and are
continuous in x.

The nonlinear system (7) becomes

®) Az(n) = A(n)z(n) + Z_: [K(n, s)z(s) + G(n, s,3(s))]
-I-F(n,w(n)), x(nO) = X0,

where
1
F(n.0) = [ 1fs(n.60) = ol 00 -2
G(TL, S’ (I;) = /l[gm (’n;, 87 :EQ) - gl (TL, s, O)]da T
0

if we put f,(n,0) = A(n) and g,(n,0) = K(n,s), and use the mean
value theorem. Then we can get the following result :

THEOREM 2.6, Suppose that

(i) the zero solution v = (0 of the linear Volterra difference system

(9) Av(n) = Aln)u(n) + i K(n,s)(s), v(ng) = vy

s=nq
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is hS,
(i) for each (n,z) € N(ng) x S(p) we have [F(n,z)| < a(n)|z| and
|G(n, s,z)| < b(n,s)|z|, where a : N(ng) — R* and b : N(ng) x
N(ng) — RT,
(iil) A(n) = h(n)[h~ (n+1)a(n)+K] € l;(N(ng)) with S.7=1 sa1 B o+
1)b(o, 8) < K, where K is a constant.
Then the zero solution z = 0 of (8) is hS.

Proof. By Lemmas 2.1 and 2.2, it follows that any solution z(n) of
(8) is given by

s5—1
z(n) = L(n,ng)zo + Z n,s+1)[F(s,z(s)) + Z G(s,0,z(0))]
E=nNg o=np
n—1
= L(n,no)o + Y L(n,s+1)F(s,z(s))
s=ng
n—1 n-—1
+ Z Z L(n,o + 1)G(0, s,2(s)),
s=npg o=s+1
where L(n,s) is the resolvent matrix of system (2). Thus, by the as-
sumptions and Lemma 2.3, we have

lz(n)] < ch(n)h™" (no)lzol + Z ch(n)h™* (s +1)a(s)|z(s)|

$§=1N0

+ Z Z ch(n)h™ (o + 1)b(o, 8)|x(s)|
s=ng g=s+1

< ch(n)h™}(ng)|zo| + ch(n) i [ (s + L)a(s) + K] |z(s)|-

S==mpn

Letting u(n) = \283‘, we obtain

n—1

u(n) < eu(ng) + ¢ Z h(s)(h™ (s + L)a(s) + K)u(s).

s=ng

It follows from the discretec Gronwall inequality in [1, 7] that

[2(m)] < ch(m)h~ (o) ol exp (¢ 3 A())

=70

< erh(n)h™H (no)|zal,
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where ¢ = cexp(c) 2, A(s)) is a positive constant. Hence the zero
solution z = 0 of (8) is hS. This completes the proof. O
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