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ON THE HAUSDORFF MEASURE FOR A
TRAJECTORY OF A BROWNIAN MOTION IN /[,

NHANSOOK CHO

ABSTRACT. We consider the Hausdorff measure for Brownian mo-
tion(BM) in l3. Several path properties of BM in Iy are used to
show the upper bound of Hausdorff measure. We also show the
lower bound of it applying a law of iterated logarithm for the oc-
cupation time of BM in ls.

1. Introduction

Let [ be as usual. In the previous paper [1] we considered the total
occupation time of Brownian motion in [, starting from the origin. Let
T(a,w) denote the total time spent in a sphere of radius a with center

0 by a particular Brownian path w = ((-) in /5. As a corollary of the
theorems we proved in [1], we get that limsup,_,o+ Eg—lg—é%—l = (C for
some constant C' > 0. Then this gives us a motivation to think of the
Hausdorff measure of Brownian motion in I3, since this limit contributes
to prove a kind of density theorem and leads to show the lower bound of
Hausdorff measure of Brownian motion. Let Sy be the covering family
of all open spheres in ;. We define a Hausdorff measure for £ C 3 using

&g l.e.,
¢ —m(E)
= 1irerlﬁ'1(r)1f { Zd)(diamsi) . E CUS;, sgp(diamSi) < €,US; € So},
where ¢ is increasing and continuous with ¢(s) — 0 as s — 0 and

satisfies a smoothness condition; that is, there exists C’ > 0 such that
$(2z) < C'¢(z) for 0 < z < 3.
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If ¢(t) = t?loglogt~! and E%(w) denotes the trajectory of Brownian
motion in R%, for 0 < t < 1 then Levy [7] showed that ¢ — m(E%(w)) <
C for some constant C with probability 1 and conjectured that ¢ —
m(E%(w)) > 0 also with probability 1. This was proved by Z. Ciesiel-
ski and S. Taylor [2] using a density theorem obtained by Rogers and
Taylor [8] for general completely additive set functions.

Let (B(t,w) be a standard Brownian motion in I, starting from the
origin and let

E(w) = {z € |z = B(t,w),t € [0,1]},

i.e., E(w) denotes the range of sample path for 0 < ¢ < 1 of a Brownian
motion process in lo. We want to show that ¢(t) = t?loglog¢™?! is the
right function such that

0< ¢—m(E(w)) < oo, with probability 1.

Even if this problem has a long history, as far as we know, there is no
analogous result for a Brownian motion in [5.

Now we review a Brownian motion in ly. Let §; be a standard [-
valued Brownian motion defined over (2, F,P) such that 8y = 0. We
have

E(/Btah’) =0 and E(/Btag)(ﬁﬂh') = (t A S)(Tg, h)

for all g,h € Iy, where T : [y — I3 is a nuclear (trace class) covariance
operator. The existence of such a Brownian motion is well known ([5,
6]). Let {e;}52, be the usual orthonormal set in {3 and suppose that T
has the orthonormal eigensystem {e;,&;} so that

T(el) = &ieia 1= 1,27"' 3

where £, >0, £; > & > &3> +--, and Y oo, & < oo. Then the following
representation holds almost surely:

o0

Bt = Z \/aBtieh

i=1

where B},i = 1,2,--- are independent, identically distributed, standard
Brownian motions in one dimension.
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2. Upper bound

If we want to prove that ¢ — m(E(w)) < oo with probability 1 it is
sufficient to find K < oc such that for each n > 0 there is a covering S
of E(w) for which supg,¢s(diamS;) < 27" and ) g .5 ¢(diamS;) < K
with probability 1. Let’s consider two random times determined by w :

P(a) = P(a,w) = inf{t; [ B(t,w)]| > a},
(2.1) T(a) = T(a,w) = / XB(0.0) (B(t,0))dt,

where X p(o,q) is the indicator function of the closed sphere of radius a.
Note that P(a) is the first passage time process and T'(a) is the sojourn
time process. We shall apply the following theorem in the proof of
Lemmas 2.1 and 2.2.

THEOREM 3.1 [3]. Let (B(t) be the Brownian motion in ly with co-
variance operator T. Let vo = ||T|| and v, = tr(T). Then, for every
r >0,

7‘2 - 2’71 t)

P{ sup [|B(s)l| > T} = exp{ Oyt

} for every t.
0<s<t

LEMMA 2.1. There exists a positive constant C1 such that for A >
Ao >0
P{P(a) > A’} = P{P(1) > A} > exp(=C\ ).

PROOF. Let 6° > 2+, and consider the following;

P{I8(0]l <5, 181 < 6} 2 P{ sup [IB(s)] <3}
=1- {sup 18(s)ll > 8}

&’ “2’71),

>1—exp(—
- 40

by Theorem 3.1[3]. Let Cyp = 1 — exp(——Ql) Also we can choose

ro (a fixed sufficiently large number, 7o > & + (40 In(52)~* + 271)2)
satisfying

1
P{ sup ||B(s)|]| >ro—46}< 500.
0<s<1
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Now, we have

Co < P{|IBO)]| <6, IB(V)]l < 4}
=PLUIBOI <o 18] <8, sup I5()ll < ro}

+P{BO) < 18] <5, sup 18(6)] = o}
<PYBO <6, 18] <4, sup 1B(s)] < ro)

+P{ sup ||B(s)|| = o — 4}
0<s<1

< P{IBO0)]| <5, 18Q)| <5, sup [B(s)]| <o} + %Co
0<s<1

Hence
@2 PSOI < 18] <5 sup [66s)] <ra} > 5o

We can now use the Markov property, restarting the process at ¢t =
1,2,...k — 1, and estimating the probability by assuming that ||5(¢ —
DI < 4, ||B(%)]] < 6 and B(t) remains in the sphere of radius r¢ for
i—1<t<i, i=1,2...k By (2.2),

1 k
P{ sup [[6(s)]l <70} > (5Co) (= exp{~klog(2C5 ")}

Thus
P{P(1) 2 A} = P{ sup [|B(s) <1}
0<s<A
=P{ sup [|B(s)ll <ro}
0<s<r2 A
> exp{—Ar log(2Cy 1)}
Letting C; = 73 log(2C5™"), we get the result. (|

To overcome independence difficulties we consider a sparse sequence
2
tk=e% k=1,2.... Let

M(ty) = sup 18O,

te+1 <t<tp
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and

M'(ty) = sup [B(t) = Blte+1)ll.

b1 SE<ig

(Note that ¢(y(s)) ~ s and ¥(¢(s)) ~ s as s — 04.) The following
Lemma 2.2 and Lemma 2.3 are adapted from the part of proof for The-
orem 4 in [9].

LEMMA 2.2. Let Cy = (301) Then

(2.3) P{ inf MO 202} < exp{-mt},

T<t<tm

provided 0 < 7 < tg,, for suﬂic1ent]y large m.

PROOF. Note that M(t) < M'(tg) + ||B(tx+1)]|. If we let

_ M) M) 1B8(tk+1l
D= { Gy > 2o 6= {5 > @) 1= (5057 > &)
we have Dy, C G U Hy and
(2.4) M2 De C (MEZ,G) U (R, He),

where the events Gy, are now independent while the H}. have very small
probability when k is large. Put P(Gx) = 1 — pg, P(Hy) = gx. Then by
Lemma 2.1

p 2 P{ Ajg:)) <G}

= P{P(Covo(ts)) > ti}
=P{P(1) > C;*(loglogt; ")}

> exp{ — %log log(exp k2)}
= k3,
gx = P{y/tir1llBQ)]| > Cav/ix - (loglog(tx) ™)~}

Cgek
<P{lI0l > = > )

<P{lsi > &2}

(C3(e"/k)? — 2v1)
4o

)
p{2’70

(smce
tr+1

< exp { — } (by Theorem 3.1 in [3])

e2k
< exp{ — %—kg}ex
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Therefore 227 g, < ™™ for large m. Since {M (t;4:) > 2Cot(tm)} C
D,y for every i = 0,1,2...., using this estimates with (2.4),

P{(NZDm+s} S 21— pk) + D i
k=m

2m

SeXP{— Zpk}+e‘m
k=m

< exp{—m‘ll}.

Hence we get

p{ %{% > 30(tm) } < exp{-m4)

in case that 0 < 7 < tg,. O
LEMMA 2.3. There are positive constants Cs,Cy such that

@5 P{ w24

< Cg} < exp{—Cyk?}.

PROOF. If we put a, = ¥(tn), then (a,,)* < ag,,. Note that

P{ *:Z ((t’i;”)) > 202} = P{P(2C3%(tm)) < tm}

> P {5y <597}

By (2.3),
P(a) 1 -2 1
Py sup —= < =C < exp{~m*4},
{As«zsr:xm ¢la) ~ 82 } pi=m*}
provided 0 < A < a?, and m is large. If A is small enough and m =
[(Z1og A~1)2] (the integer part of (-)2), then we have A < a%, < a,, < AS
since

aym = [log m? exp(m?)] ™%

=

~ (logl(—3 log )))7# - A

< As.
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If we take A = 275 then mi ~ [(2log A\"1)#]% ~ (1210g2)5 - k3. Let
C3 = 1C7? and Oy = (21og2)3, then we get (2.5). O

In the following lemma, we can show that for each n there exists a
covering of E(w) in Iy, denote A,,, which consists of spheres with radius
2~ centered at B(t,w) for some t € [0, 1], and E[N,,(w)] < C52?™ where
N, (w) is the number of these spheres and C5 is some constant.

LEMMA 2.4. There exists A, (w), a collection of spheres of radius 27",
centered at B(t,w) for some t € [0,1], which coveres E(w). Let N,(w)
be the number of these spheres. Then there is a constant Cs which is
independent of n such that E[N,(w)] < Cs2%".

PROOF. Let 09 =0 and for k > 1, let

T = inf{s > Ok—1: “B(S) — ,B(O'k—l)” > 2—n}

o = min{r, 061 +27"}.

Then Yy = Y3 (27™") = o) —0k—1 is a sequence of independent identically
distributed random variables. If n = min{k : o > 1} then let

An(w) = {B(ﬂ(ok)72—n) Z:p
where B(B3(01),2™ ") is the sphere of radius 27" centered at 3(oy),

and
Elo,) <E[1+27"] <2

Now Y1(27™) and 272"Y;(1) have the same distribution by the scaling
property so that E[Y;(27")] = 272"E[Y;(1)]. Thus

E[N, ()] = Eln(w)] = E[¥1(1)] " - 2°"E[o,] < 2[E(Y1(1)] 7" - 27",

Let Cs = E—D—,f(—l)] Then we get the result. O
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THEOREM 2.5.
¢ —m(E,) < Ky with probability 1,
where Ky is a constant.

PROOF. Let Agy be a family of sphere B(8(ay,),27%") for some posi-
tive integer A, constructed by Lemma 2.5. In some sense we want to give
the lattice points on E(w), by £(ox). As the notation (2.1), we denote
(2.6)

W(BE(00) = [ xaiam .o Bt
P(B(B(ok),a)) = inf{t : B(t,w) ¢ B(B(ok),a) after hitting B(ox)}.
We call (o) bad if

wp BB )

<Cs
2~6h<q<2~h ¢(a) ’

where ¢(a) = a®logloga~!. Otherwise it is good. By Lemma 2.3,

P{ﬁ(ak) is bad } ~ P{ sup w < Cg}

2~6h<q<o—h #(a) N
P(B(8(0x),a))
<L, 5%

< exp(—Cyh3).

We cover the bad point B(cr) on F(w) by (so called) ‘bad’ sphere,
B(B(01),275") in Agp,. Then the expectation of the number of the bad

spheres, say Mgy,
E(Mn] < E[Non] - exp(~Caht) < C52'*" - exp(~Cyh¥).

Now
P{Mﬁh > (C52'%" - _exi((;—cei})“—))%}
< C52'2" . exp(—Cyh¥)
" [C5212% - exp(—Cyh¥)/$(2700)]
~ (Cs2'2h -exp(—C'4h'}3)2_12h -log 6h)%
~ exp(—C4h?15')%.
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An application of the Borell-Cantelli Lemma now shows that, with prob-
ability 1, there exists an integer h; = h;(w) such that for h > hy

Mon(w) < (Cs2'2" %@)5

Using this, we can show that the contribution of the bad spheres to
the sum is negligible, that is, let

S, = {B(B(ok),27"), B(0x) is a bad point}.
Then

)" ¢(diam$;) < Mgno(diams;)
S:€8

< (C52'2" exp(—Cyh® )p(276M)) 3.

Thus this converges to 0 a.s. as h — o0o. Hence it becomes enough to
consider a covering of good points of E(w).
If B(o) is good then there exists a;, € [27%%,27"] such that

w(B(B(or)), ax)
#(ax) > Cs

Assuming Ay = B(0p) = 0 is good, then there exists minimal ag €
[26%, 27"] such that u(B()\g,a0)) > Cs¢(ag). Denote So = B(Ao,a0)
and cover G(0) by Sp. Let

A1 = inf{o} > Ao : B(or) € 5§, B(or)is good}.

Then there exists minimal a; € [27%%,27"] such that u(B(8(\1),a1)) >
Czd(ar). Cover B(A1) by S; = B(8(A\1),a1). By induction, let

An = inf{or > A1 : B(ok) € (Uj<n—-1S5;)%, B(or) is good}

and choose a, € [275",27%] such that u(B(8(\n),a,)) > Csé(a,), and
cover B(A,) by Sn = B(8(An),an). Note that we have covered the bad
points by S; = {(B(8(ck),27%")}. Let S, = US,,. Then S = §; US> is a
covering for E(w)(= E,,) with diam$; < 2-27" for every S; € S. If any S,
is a good sphere satisfying S;NE,, C S;NE,, ¢ # j, then throw S; away.
Also if there exists j and k satisfying S;NE,, C (S;—;NE,)U(S;xxNE,),
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throw S; away. Let K(h) be the maximal number of S; € S which a
point of E(w) belongs to, then

K(h) = sup #{Ax:0(s) € Sk, Sk € S2}.

0<s<1

Thus we can find a subcovering of S; such that no point of E(w) is
in more than K(h) < oo spheres of S;. Now K(h) < N(6h) a.s. and
E(Ng,) < Cs2'?". Hence (for fixed h) K(h) is bounded a.s. If 3(s) €
B(B(0ok, ), ak,) for some kg, then the number of spheres which B(B(o,),
ak,) meets is decreasing as h — o0, and hence K(h) is non-increasing
as h — oo, i.e. 3(s), s € [0,1] belongs to less spheres as radius becomes
smaller.

Up to now we covered good points by good spheres and then obtained
an economical covering, say S; such that

> g(diamS;) < D d(2a:) < Y 4g(as)

S:€8] 5:€8, 5:€8}
4
< oA Z w(S;)
3
S;€8)
< 4 K(h) as
<G 8.

Let K = limp o0 é‘;K(h). Then

Z ¢(diamS;) < K a.s.

S;€8)
Hence, almost surely

. . . . . . . ) —h .
hhrr_l)gf { Zq&(dlamSz) : E, C US;,diamS; < 27" US; € So} < K. O

3. Lower bound

Let M be the set of o-finite measures on Is.
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LEMMA 3.1. Let {$(s),0 < s < oo} be Brownian motion in ly start-
ing from the origin and for any Borel set, B C I,

o(B,w) = /0 " B (8(s,w))ds.

Let ® be a continuous function in the vague topology on M. Then for
almost all Brownian paths w,

: @ (J('7w))
D o @logloga T

for some constant C.

ProOOF. This is a corollary of Theorem 3.1 and 3.2 in [1]. O

REMARK 3.2. Let T(a,w) be defined as (2.1). For ¢ € M, let
®(0) = o(B(0,1)) where B(0,1) is the unit sphere in lo with center
at 0. Applying the above lemma we get for some constant C' < oo

T(a,w)

li —_—l = 8.
ljr_l,%lip a?logloga—! ¢ as
COROLLARY 3.3. For fixed tg,
lim sup o(B(Bto), 2), ) =C. as.
a—0+ (rb(a’)

PROOF. Let 3(s) = B(to + s) — B(t0),0 < s < co. Then it defines a
version of the Brownian motion for which 3(0) = 0. O

The following is a generalization of density theorem proved by Rogers
and Taylor [8].
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LEmMA 3.4. Suppose F is any finite completely additive measure
defined for all Borel subsets of l. Let ¢(t) be a continuous monotone
increasing function of t with lim, .o+ ¢(¢t) = 0 and for any k > 0O define
DyF(z) and E}, as the following:

. F(B(z,27"))
D F{z) = limsup ———=,
oFlm) =B =5 T
If E is a set of I such that EN E;, = 0 then
F(E) < k(¢ — m(E)).

Ep ={x: DyF(z) > k}.

ProoF. This is a routine extension of Theorem [B] in [2] applying
the above corollary. O

THEOREM 3.5.
¢ —m(E,) >0 with probability 1.

PRrOOF. Since S(t,w) is continuous, we may define a set function
F,(A) for every Borel set A in I by

F,(A) =m{t e 0,1] : B(t,w) € A},
where m is the Lebesque measure in R!. Let us consider

: F,(B(z,a))
DyF,(z) = limsup -~ .

o) =1 = o)

If z # B(t,w) for any ¢, 0 < t < 1, then since the path is a closed set
we have Dy F,, () = 0.

If z = B(to,w) for some ty, 0 <ty < 1, then with probability 1

D¢Fw (ZE) S 11£22p Z(_B%:E(;I_(;M_)

=C
for some constant C' by Corollary 3.3. By setting up a product measure
in [0,1] x Q and applying Fubini theorem, it follows from that with
probability 1
(3.2) DyF,(x) < C, for almost all t in [0,1],
where = B(t,w). Let E. = {x : DyF,(z) > C}. Then E,NE, = § from

(3.2). Therefore by Lemma 3.4 F,(E(w)) < C - ¢ — m(E(w)). Therefore
we showed that with probability 1

¢ —m(Bw)) > C~%. =
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