ISOMETRIC IMMERSIONS OF MANIFOLDS INTO SPACE FORMS WITH THE SAME CONSTANT CURVATURES

JOONSANG PARK

ABSTRACT. We study a unifying method to obtain nondegenerate isometric immersions of manifolds of constant sectional curvatures c with flat normal bundles into the space forms of curvature c for c=-1,0,1.

1. Introduction

The problem of immersions of the space forms $N^n(c)$ into the space forms $N^{n+k}(c')$ is one of the most important problems in differential geometry. The first result about this was given by Hilbert [3], who proved that a complete 2-dimensional Riemannian manifold of constant negative curvature, say, the hyperbolic space form \mathbb{H}^2 cannot be isometrically immersed into 3-dimensional Euclidean space \mathbb{R}^3 . If the dimension of \mathbb{H}^n is bigger than 2, much has been known, even for the local immersions. A starting work on it was due to Cartan [2]. He proved that $N^{n}(c)$ cannot be locally, isometrically immersed in $N^{2n-2}(c+1)$, but can be into $N^{2n-1}(c+1)$. Moreover, if such an immersion exists, then the normal bundle is automatically flat. Later, many results have been obtained for this problem in [4], [5], [6], [7], [8]. In particular, Terng [8] studied immersions of $N^n(c)$ in $N^{2n}(c)$ for each case c=-1,0,1, separately, using the so-called n-dimensional systems on symmetric spaces. This work was extensively generalized to an arbitrary codimension case in [1], recently.

Received July 31, 2001. Revised August 30, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 57N35.

Key words and phrases: isometric immersion, space form, flat connection, nondegenerate.

This work was supported by Grant No. R01-2000-00004 from the Basic Research Program of the Korea Science & Engineering Foundation.

In this paper, we give a simple proof for local nondegenerate immersions $N^n(c)$ into $N^{n+k}(c)$ with flat normal bundles for $k \geq n$, unifying all the cases c = -1, 0, 1 using only one real symmetric space related to isometry groups of $N^{n+k}(c)$. Also, we investigate in detail on the geometric meaning of the conditions of nondegeneracy and flat normal curvatures for such immersions.

2. Submanifolds in a space form

The space form $N^n(c)$ is the complete, simply connected Riemannian manifold with constant sectional curvature c. For example, when c = 0, 1, or -1, it is the Euclidean space \mathbb{R}^n , the unit sphere \mathbb{S}^n , or the hyperbolic space \mathbb{H}^n .

Suppose $X: M^n \to N^{n+k}(c)$ is an isometric immersion. Take a local orthonormal frame field e_1, \dots, e_{n+k} on $N^{n+k}(c)$, so that if when restricted to M, e_1, \dots, e_n are tangent to M. From now on, we shall use the following index convention:

$$1 \le A, B, C \le n + k, \quad 1 \le i, j, k \le n, \quad n + 1 \le \alpha, \beta, \gamma \le n + k.$$

Let ω_A be the dual coframe to e_A , that is, $\omega_A(e_B) = \delta_{AB}$. The first fundamental form on M is given by $I = \sum_i \omega_i \otimes \omega_i$. Let ω_{AB} be the connection 1-form corresponding to the canonical connection d on $N^{n+k}(c)$,

$$de_A = \sum_B e_B \otimes \omega_{BA}.$$

This induces the Levi-Civita connection ∇ on M by

$$\nabla e_i = \sum_j e_j \otimes \omega_{ji},$$

and the structure equations on M are

(2.1)
$$d\omega_i = -\sum_j \omega_{ij} \wedge \omega_j.$$

The Gauss, Codazzi and Ricci equations are

(2.2)
$$d\omega_{ij} = -\sum_{k} \omega_{ik} \wedge \omega_{kj} - \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j} + c \omega_{i} \wedge \omega_{j},$$

(2.3)
$$d\omega_{i\alpha} = -\sum_{k} \omega_{ik} \wedge \omega_{k\alpha} - \sum_{\beta} \omega_{i\beta} \wedge \omega_{\beta\alpha},$$

(2.4)
$$d\omega_{\alpha\beta} = -\sum_{i} \omega_{\alpha i} \wedge \omega_{i\beta} - \sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta}.$$

From (2.2) and (2.4), we obtain the curvature 2-form Ω on M and the normal curvature 2-form Ω^{ν} as

(2.5)
$$\Omega_{ij} = -\sum_{\alpha} \omega_{i\alpha} \wedge \omega_{j\alpha} + c \,\omega_i \wedge \omega_j,$$

(2.6)
$$\Omega^{\nu}_{\alpha\beta} = -\sum_{i} \omega_{i\alpha} \wedge \omega_{i\beta}.$$

The shape operator $A_{e_{\alpha}}$ in the direction e_{α} is defined by

(2.7)
$$A = \sum_{j,\alpha} \omega_{j\alpha} \otimes \omega_{\alpha} \otimes e_{j},$$

which is identified with the second fundamental form II under the metric isomorphism $TN^{n+k}(c) \simeq TN^{n+k}(c)$:

(2.8)
$$II = \sum_{j,\alpha} \omega_{j\alpha} \otimes \omega_{j} \otimes e_{\alpha}.$$

Now, suppose the normal bundle νM is flat, i.e., $\Omega^{\nu} = 0$. Then there exists a parallel normal frame $\{e_{\alpha}\}$ and it is easy to see that all the shape operators commute by (2.6), and thus they are simultaneously diagonalizable.

DEFINITION 2.1. A submanifold M^n is called nondegenerate if dim $\{A_v | v \in \nu_p M\} = \dim M = n \text{ for any } p \in M.$

The conditions of being nondegenerate and $\Omega^{\nu}=0$ give a strong geometric restriction to M. To see this, let $T_pM=E_1\oplus\cdots\oplus E_r$ be the common eigen-decomposition for $\{A_v|v\in\nu_pM\}$. Then

$$A|_{E_i} = \lambda_i \otimes Id_{E_i}$$

for some $\lambda_1, \dots, \lambda_r \in (\nu_p M)^*$. The curvature normals v_1, \dots, v_r in $\nu_p M$ are defined as the dual to λ_i , that is, $\lambda_i(v) = \langle v, v_i \rangle$.

LEMMA 2.2. Suppose M^n is nondegenerate and has a flat normal bundle. Then the curvature normals v_1, \dots, v_r are linearly independent and r = n.

PROOF. We claim that A_{v_1}, \dots, A_{v_r} span $\{A_v | v \in \nu_p M\}$. For any $w \in \nu_p M$, let $w = v + u \in \operatorname{Span}\{v_i\} \oplus \operatorname{Span}\{v_i\}^{\perp}$. Then

$$A_w|_{E_i} = \langle w, v_i \rangle Id_{E_i} = \langle v, v_i \rangle Id_{E_i} = A_v|_{E_i}.$$

Thus $A_w = A_v$. Since M is nondegenerate, r = n and A_{v_1}, \dots, A_{v_n} should be a basis of $\{A_v | v \in \nu_p M\}$. Now it is easy to see that v_1, \dots, v_n are linearly independent.

REMARK 2.3. From the above lemma, we can see that $\dim E_i = 1$ and thus there exist a unique orthonormal tangent frame $\{e_i\}$ which diagonalize the shape operators simultaneously, up to signs and permutations, and they are smooth. Also, it is obvious that $k \geq n$.

Now, suppose e_{α} are a parallel orthonormal normal frame, i.e., $\omega_{\alpha\beta} = 0$. The curvature normals v_i can be expressed as

$$(2.9) v_i = \sum_{\alpha} \lambda_{i\alpha} e_{\alpha},$$

where, $\lambda_{i\alpha} = \langle e_{\alpha}, v_i \rangle = \lambda_i(e_{\alpha})$. Using this frame $\{e_i, e_{\alpha}\}$, we have

$$(2.10) \omega_{i\alpha} = \lambda_{i\alpha}\omega_i.$$

Furthermore, suppose M has constant sectional curvature c, that is,

$$\Omega_{ij} = c \,\omega_i \wedge \omega_j.$$

Then by (2.5), (2.10) and (2.11),

(2.12)
$$\sum_{\alpha} \lambda_{i\alpha} \lambda_{j\alpha} = 0 \quad \text{for} \quad i \neq j,$$

and hence the curvature normals v_i are orthogonal. From the Codazzi equations (2.3), using (2.10) and $\omega_{\alpha\beta} = 0$, we obtain

(2.13)
$$d\lambda_{i\alpha}(e_j) + (\lambda_{i\alpha} - \lambda_{j\alpha})\gamma_{iji} = 0 \text{ for } i \neq j,$$

(2.14)
$$(\lambda_{i\alpha} - \lambda_{k\alpha})\gamma_{ikj} = (\lambda_{i\alpha} - \lambda_{j\alpha})\gamma_{ijk}$$
 for distinct i, j, k , where $\omega_{ij} = \sum_{k} \gamma_{ijk}\omega_k$.

Put $b_i = 1/|v_i|$. Multiplying $\lambda_{i\alpha}$ to (2.13) and (2.14) and summing up over α , we obtain

$$|v_i|^2 \gamma_{ijk} = 0$$
 for distinct i, j, k , and $\gamma_{iji} = \frac{db_i(e_j)}{b_i}$ for $i \neq j$.

Therefore,

(2.15)
$$\omega_{ij} = \frac{db_i(e_j)}{b_i}\omega_i - \frac{db_j(e_i)}{b_j}\omega_j.$$

PROPOSITION 2.4. Suppose M^n is a nondegenerate submanifold of $N^{n+k}(c)$ with constant sectional curvature c and a parallel normal frame e_{α} . Then there exists a coordinate system (x_1, \dots, x_n) such that $e_i = \frac{1}{b_i} \frac{\partial}{\partial x_i}$ is a principal tangent frame.

PROOF. By (2.15), we see that $\nabla_{e_i} e_j = \frac{db_i(e_j)}{b_i} e_i$. It is a direct calculation that

$$[b_i e_i, b_j e_j] = \nabla_{b_i e_i} b_j e_j - \nabla_{b_j e_j} b_i e_i = 0.$$

We now conclude the local geometry of the above submanifold as follows;

THEOREM 2.5. Let $X: M^n \longrightarrow N^{n+k}(c)$ be a nondegenerate local immersion of the Riemannian manifold M'' of constant sectional curvature c with flat normal bundle. Then, for a local parallel normal frame e_{α} , there exists a curvature coordinate system (x_1, \dots, x_n) , a map $b = (b_1, \dots, b_n)^t$ and a $k \times n$ matrix-valued $B_1 = (b_{ij})$ such that $B_1^t B_1 = Id$ and the first and second fundamental forms are given by

$$I = \sum_{i} b_i^2 dx_i^2, \qquad II = \sum_{i,j} b_{ji} b_i dx_i^2 \otimes e_{n+j}.$$

PROOF. It remains only to prove the existence of B_1 and the second fundamental form given as above. Let $e_i = \frac{1}{b_i} \frac{\partial}{\partial x_i}$. Then $\omega_i = b_i dx_i$.

Define $b_{ji} = \lambda_{i,n+j}b_i$. Then by (2.10),

$$\omega_{i,n+j} = \lambda_{i,n+j}\omega_i = b_{ji}dx_i.$$

Hence, the second fundamental form is given as above. The orthonormality of the columns of B_1 follows from the fact that the curvature normals $v_i = \sum_{\alpha} \lambda_{i\alpha} e_{\alpha}$ are orthogonal and $b_i = 1/|v_i|$.

3. G/K Systems

G/K systems were introduced for a symmetric space G/K by Terng in [8]. We will review definitions briefly. For more details, see [8].

Let G/K be a rank n symmetric space, $\sigma: \mathcal{G} \to \mathcal{G}$ the corresponding involution on the Lie algebra \mathcal{G} of G, $\mathcal{G} = \mathcal{K} + \mathcal{P}$ the Cartan decomposition, and $\mathcal{A} \subset \mathcal{P}$ a maximal abelian subalgebra. Let a_1, \ldots, a_n be a basis for A consisting of regular elements with respect to the Ad(K)action on \mathcal{P} . Let \mathcal{A}^{\perp} denote the orthogonal complement of \mathcal{A} in \mathcal{G} with respect to the Killing form. Then G/K system for $v: \mathbb{R}^n \to \mathcal{P} \cap \mathcal{A}^+$ is

$$[a_i, v_{x_i}] - [a_j, v_{x_i}] = [a_i, v], [a_j, v], \quad 1 \le i \ne j \le n,$$

where, $v_{x_i} = \frac{\partial v}{\partial x_i}$. This system is equivalent to the following Lax pair:

$$\left[\frac{\partial}{\partial x_i} + \lambda a_i + [a_i, v], \frac{\partial}{\partial x_j} + \lambda a_j + [a_j, v]\right] = 0 \quad \text{for any} \quad \lambda \in \mathbb{C}.$$

The Cauchy problem for G/K system can be solved for any generic data decaying rapidly along $(x_1, 0, \ldots, 0)$ (cf. [8]).

We can also express G/K system in terms of a connection 1-form on the trivial principal bundle $\mathbb{R}^n \times \mathcal{G}$ on \mathbb{R}^n . To see this, we need the following proposition, which can be proved by a direct computation.

PROPOSITION 3.1. Given smooth maps $A_i : \mathbb{R}^n \to \mathcal{G}$ for $1 \le i \le n$, the following statements are equivalent:

- (i) $E_{x_i} = EA_i$ is solvable for $E : \mathbb{R}^n \to G$, (ii) $\left[\frac{\partial}{\partial x_i} + A_i, \frac{\partial}{\partial x_j} + A_j\right] = 0$,
- (iii) $(A_j)_{x_i} (A_i)_{x_j} + [A_i, A_j] = 0,$
- (iv) $d\theta + \theta \wedge \theta = 0$, where θ is the \mathcal{G} -valued 1-form $\sum_{i=1}^{n} A_{x_i} dx_i$. In this case, we call E a trivialization of θ and it satisfies $E^{-1}dE = \theta$.

Suppose E is a trivialization of θ , $E^{-1}dE = \theta$. Let $g: \mathbb{R}^n \to G$. The gauge transformation of E by g is defined as $g*E = Eg^{-1}$. This induces a new flat connection

$$(Eg^{-1})^{-1}d(Eg^{-1}) = g\theta g^{-1} - dgg^{-1}.$$

We call $g * \theta = g\theta g^{-1} - dgg^{-1}$, the gauge transformation of θ by g.

It is easy to see that v is a solution for G/K system if and only if the following one-parameter family of $\mathcal{G} \otimes \mathbb{C}$ -valued connections on \mathbb{R}^n is flat;

(3.1)
$$\theta_{\lambda} = \sum_{i=1}^{n} (a_i \lambda + [a_i, v]) dx_i.$$

PROPOSITION 3.2. Let a_1, \dots, a_n be a basis of a maximal abelian subalgebra \mathcal{A} in \mathcal{P} , and $u_i : \mathbb{R}^n \to \mathcal{K}_{\mathcal{A}}^{\perp}$ smooth maps for $1 \leq i \leq n$, where $\mathcal{K}_{\mathcal{A}}$ is the centralizer of \mathcal{A} in \mathcal{K} . If

(3.2)
$$\theta_{\lambda} = \sum_{i=1}^{n} (a_i \lambda + u_i) dx_i$$

is a flat connection 1-form on \mathbb{R}^n for all $\lambda \in \mathbb{C}$, then there exists a unique map $v : \mathbb{R}^n \to \mathcal{P} \cap \mathcal{A}^\perp$ such that $u_i = [a_i, v]$.

PROOF. We may assume that a_1, \dots, a_n are regular by changing a basis and coordinates. Since θ_{λ} is flat for all λ ,

$$[a_i, u_j] = [a_j, u_i].$$

Because a_1, \dots, a_n are regular, $\operatorname{ad}(a_j)$ maps $\mathcal{P} \cap \mathcal{A}^{\perp}$ isomorphically to $\mathcal{K}_{\mathcal{A}}^{\perp}$. Hence there exists a unique $v_j \in \mathcal{P} \cap \mathcal{A}^{\perp}$ such that $u_j = \operatorname{ad}(a_j)(v_j)$ for $1 \leq j \leq n$. Then (3.3) implies that

$$ad(a_i)ad(a_j)(v_j) = ad(a_j)ad(a_i)(v_i).$$

Since $[a_i, a_j] = 0$, $\operatorname{ad}(a_i)\operatorname{ad}(a_j) = \operatorname{ad}(a_j)\operatorname{ad}(a_i)$. But $\operatorname{ad}(a_i)$ is injective on $\mathcal{P} \cap \mathcal{A}^{\perp}$ so that $v_i = v_j$, which will be denoted by v.

Thus the existence of the solution v of the system is equivalent to the flatness of the connection θ_{λ} of the form (3.2).

To explain the geometry of a submanifold M^n in $N^{n+k}(c)$, we need to know the isometry group of $N^{n+k}(c)$. First, we identify \mathbb{R}^{n+k} with $\mathbb{R}^{n+k} \times \{1\} \subset \mathbb{R}^{n+k+1}$ by $X \leftrightarrow (X,1)$. Then all the space form $N^{n+k}(c)$ can be regarded as subsets of the vector space \mathbb{R}^{n+k+1} . It is well-known

that the isometry groups of \mathbb{R}^{n+k} , \mathbb{S}^{n+k} and \mathbb{H}^{n+k} (corresponding to 0, 1 and -1, respectively) are

$$\left\{ \begin{pmatrix} A & \xi \\ 0 & 1 \end{pmatrix} \mid A \in O(n+k), \ \xi^t \in \mathbb{R}^{n+k} \right\},\,$$

$$O(n+k+1) = \left\{ A \in GL(n+k+1,\mathbb{R}) \mid A^t A = I \right\}$$

and

$$O(n+k,1) = \left\{ A \in GL(n+k+1,\mathbb{R}) \mid A^t J A = J \right\},\,$$

where $J = diag(1, \dots, 1, -1)$.

LEMMA 3.3. The Lie algebras of the isometry groups of $N^{n+k}(c)$ can be expressed as the Lie algebra

$$\mathcal{G}_c = \left\{ \begin{pmatrix} Y & \xi \\ -c\xi^t & 0 \end{pmatrix} \middle| Y \in \operatorname{so}(n+k), \ \xi^t \in \mathbb{R}^{n+k} \right\}.$$

PROOF. The Lie algebras of the isometry groups of $N^{n+k}(c)$ are of the form

$$\left\{ \left(\begin{matrix} Y & \xi \\ 0 & 0 \end{matrix} \right) \ \middle| \ Y \in \operatorname{so}(n+k), \ \xi^t \in \mathbb{R}^{n+k} \right\}, \ \operatorname{so}(n+k+1) \ \operatorname{and} \ \operatorname{so}(n+k,1),$$

respectively. It is trivial that all of these are \mathcal{G}_c for c=0,1 or -1, respectively.

Now, for \mathcal{G}_c , define an involution

$$\sigma(X) = \begin{pmatrix} I_k & 0 & 0 \\ 0 & -I_n & 0 \\ 0 & 0 & -1 \end{pmatrix} X \begin{pmatrix} I_k & 0 & 0 \\ 0 & -I_n & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ X \in \mathcal{G}_c.$$

Here, the matrix is partitioned into 3×3 -blocks with sizes (k, n, 1), and I_n is the $n \times n$ identity matrix. Then the Cartan decomposition becomes $\mathcal{G}_c = \mathcal{K} + \mathcal{P}$, where

$$\mathcal{K} = \left\{ \begin{pmatrix} A & 0 & 0 \\ 0 & B & a_1 \\ 0 & -ca_1^t & 0 \end{pmatrix} \mid A \in \text{so}(k), \ B \in \text{so}(n), \ a_1^t \in \mathbb{R}^n \right\},\,$$

$$\mathcal{P} = \left\{ \left(egin{array}{ccc} 0 & C & a_2 \ -C^t & 0 & 0 \ -ca_2^t & 0 & 0 \end{array}
ight) \; \middle| \; C \; ext{is a} \; \; k imes n \; ext{matrix}, \; a_2^t \in \mathbb{R}^k
ight\}.$$

Put

$$\mathcal{A} = \left\{ \begin{pmatrix} 0 & -D & 0 \\ D & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| D = (d_{ij}), \ d_{ij} = 0 \text{ for } i \neq j \right\},\,$$

then it is an abelian subalgebra in \mathcal{P} with a basis

$$a_i = \left(egin{array}{ccc} 0 & -D_i & 0 \ D_i & 0 & 0 \ 0 & 0 & 0 \end{array}
ight), \qquad 1 \leq i \leq n,$$

where D_i has 1 as the (i,i)-entry and zero elsewhere. Let $(\mathcal{G}_c)_{\mathcal{A}}$ denote the centralizer of \mathcal{A} in \mathcal{G}_c . Then $\mathcal{P} \cap (\mathcal{G}_c)_{\mathcal{A}}^{\perp}$ is the space of elements of the form

$$v = \begin{pmatrix} 0 & 0 & F & b \\ 0 & 0 & G & 0 \\ -F^t & -G^t & 0 & 0 \\ -cb^t & 0 & 0 & 0 \end{pmatrix},$$

where v is partitioned into 4×4 -blocks with sizes (n, n - k, n, 1) and $F = (f_{ij}) \in gl(n)$ with $f_{ii} = 0$.

Since v is completely determined by (F, G, b), we will say that (F, G, b) is a solution of this system instead of v being a solution.

Put $\delta = \operatorname{diag}(dx_1, \dots, dx_n)$. Then the connection 1-form θ_{λ} in (3.1) becomes

$$\theta_{\lambda} = \begin{pmatrix} \delta F^{t} - F\delta & \delta G^{t} & -\lambda \delta & 0 \\ -G\delta & 0 & 0 & 0 \\ \lambda \delta & 0 & \delta F - F^{t}\delta & \delta b \\ 0 & 0 & -cb^{t}\delta & 0 \end{pmatrix}.$$

It is obvious that

PROPOSITION 3.4. (F, G, b) is a solution of G/K-system associated to \mathcal{G}_c if and only if θ_{λ} in (3.4) is flat for any λ .

4. Main Theorems

THEOREM 4.1. A nondegenerate local immersion X of the Riemannian manifold M^n into $N^{n+k}(c)$ of constant sectional curvature c with a flat normal bundle as in Theorem 2.5 gives rise to a solution (F, G, b) of the system associated to \mathcal{G}_c .

In fact, they are related by

$$F = \left(\frac{(b_i)_{x_j}}{b_j}\right), \quad \omega = \delta F - F^t \delta, \quad \text{and} \quad B_1^t dB_1 = \delta F^t - F \delta.$$

PROOF. Choose a parallel normal frame $\{e_{\alpha}\}$ and a tangent frame $\{e_i\}$ as in Theorem 2.5 so that $\omega_i = b_i dx_i$. Put $b = (b_1, \dots, b_n)^t$. Then from the structure equations, Gauss, Codazzi and Ricci equations,

$$\tilde{\theta}_1 = \begin{pmatrix} 0 & -B_1 \delta & 0 \\ \delta B_1^t & \omega & \delta b \\ 0 & -cb^t \delta & 0 \end{pmatrix}$$

is flat. It is an easy computation that

(4.1)
$$\tilde{\theta}_{\lambda} = \begin{pmatrix} 0 & -\lambda B_1 \delta & 0 \\ \lambda \delta B_1^t & \omega & \delta b \\ 0 & -cb^t \delta & 0 \end{pmatrix}$$

is also flat for any λ .

Let $F = (f_{ij}) \in gl(n)$, where $f_{ij} = \frac{(b_i)_{x_j}}{b_j}$ for $i \neq j$ and $f_{ii} = 0$. Since the connection 1-form $\omega = (\omega_{ij})$ on M satisfies

$$\omega_{ij} = \frac{(b_i)_{x_j}}{b_i} dx_i - \frac{(b_j)_{x_i}}{b_i} dx_j$$
 for $i \neq j$

by (2.15), we obtain

(4.2)
$$\omega = \delta F - F^t \delta.$$

On the other hand, from the flatness of $\tilde{\theta}_{\lambda}$,

$$dB_1 \wedge \delta = -B_1 \delta \wedge \omega = B_1 (\delta F^t - F \delta) \wedge \delta$$

and thus

$$(4.3) dB_1 = B_1(\delta F^t - F\delta) + C\delta$$

for some $k \times n$ matrix C. Extend B_1 to $B = (B_1, B_2) \in O(k)$. Then from (4.3),

$$(4.4) B_2^t dB_1 = B_2^t C\delta.$$

Since $B^{-1}dB$ is flat and

$$B^{-1}dB = \begin{pmatrix} B_1^t dB_1 & B_1^t dB_2 \\ B_2^t dB_1 & B_2^t dB_2 \end{pmatrix},$$

we have

$$(4.5) dB_2^t \wedge dB_2 + B_2^t dB_1 \wedge B_1^t dB_2 + B_2^t dB_2 \wedge B_2^t dB_2 = 0.$$

By (4.4),

$$B_1^t dB_2 = (dB_2^t B_1)^t = -(B_2^t dB_1)^t = -\delta C^t B_2.$$

So it follows from (4.5) that $B_2^t dB_2$ is flat, and hence $h^{-1}dh = B_2^t dB_2$ for some $h \in O(k-n)$. Thus if we take a gauge transformation on $\tilde{\theta}_{\lambda}$ by

$$g = \begin{pmatrix} I_n & 0 & 0 & 0 \\ 0 & h & 0 & 0 \\ 0 & 0 & I_n & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} B^t & 0 & 0 \\ 0 & I_n & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

then the resulting flat connection 1-form θ_{λ} is

$$\theta_{\lambda} = g * \tilde{\theta}_{\lambda} = \begin{pmatrix} B_1^t dB_1 & -\delta C^t B_2 h^t & -\lambda \delta & 0 \\ h B_2^t C \delta & 0 & 0 & 0 \\ \lambda \delta & 0 & \omega & b \\ 0 & 0 & -c b^t & 0 \end{pmatrix}.$$

Set $G = -hB_2^tC$. From (4.3), we have $B_1^tdB_1 - (\delta F^t - F\delta) = Y\delta$, where $Y = B_1^tC$. Since the left-hand side is skew-symmetric, so is $Y\delta$. But $Y\delta = -\delta Y^t$ implies that Y = 0. It follows that the flat connection $g * \tilde{\theta}_{\lambda}$ is of the form θ_{λ} defined by (3.4). Therefore (F, G, b) is a solution of the system associated to \mathcal{G}_c .

Conversely, we have

THEOREM 4.2. A solution (F,G,b) of the system associated to \mathcal{G}_c gives rise to a nondegenerate local immersion X_c of M^n of constant sectional curvature c with flat normal bundle into $N^{n+k}(c)$, which has a parallel normal frame $\{e_{\alpha}\}$ and a coordinate system (x_1, \dots, x_n) such that the first and second fundamental forms are given by

$$I = \sum_{i} b_i^2 dx_i^2, \qquad II = \sum_{i,j} b_{ji} b_i dx_i^2 \otimes e_{n+j}.$$

PROOF. We have a flat connection θ_{λ} as in (3.4) obtained from (F,G,b).

Since
$$\eta = \begin{pmatrix} \delta F^t - F\delta & \delta G^t \\ -G\delta & 0 \end{pmatrix}$$
 is flat, $B^t dB = \eta$ for some $B \in O(k)$.

Taking a gauge transformation $h = \begin{pmatrix} B & 0 \\ 0 & I \end{pmatrix}$ on θ_{λ} gives $h * \theta_{\lambda} = \tilde{\theta}_{\lambda}$, where $\tilde{\theta}_{\lambda}$ is of the form (4.1). Now, let E be a trivialization of $\tilde{\theta}_{1}$, that is, $dE = E\tilde{\theta}_{1}$. Denote by e_{α}, e_{i}, X_{c} the columns of E. Then from

$$d(e_{\alpha}, e_i, X_c) = (e_{\alpha}, e_i, X_c) \tilde{\theta}_1,$$

we obtain

$$dX_c = \sum b_i dx_i \otimes e_i, \quad de_{n+j} = \sum_i b_{ji} dx_i \otimes e_i,$$

and thus e_{α} are a parallel normal frame and II is given as above. Therefore, X_c gives a desired immersion.

We can conclude that there is a correspondence between the nondegenerate isometric immersions of n-dimensional manifolds of constant sectional curvatures c with flat normal bundles into $N^{n+k}(c)$ and the solutions of systems associated to the Lie algebra \mathcal{G}_c for $k \geq n$.

References

- [1] M. Brück, X. Du, J. Park, and C. L. Terng, The submanifold geometry of real Grassmannian systems, to appear in Mem. Amer. Math. Soc..
- [2] E. Cartan, Sur les variètès de courbure constante d'un espace euclidien ou noneuclidien, Bull. Soc. Math. France 47 (1920), 125-160.
- [3] D. Hilbert, Über Flächen von konstanter Gausscher Krümmung, Trans. Amer. math. Soc. 2 (1901), 89–99.

- [4] J. Moore, Isometric immersions of space forms in space forms, Pacific Jour. Math. 40 (1972), 157-166.
- [5] K. Tenenblat, Bäcklund's theorem for submanifolds of space forms and a generalized wave equation, Boll. Soc. Brasil. Mat. 16 (1985), 67-92.
- [6] K. Tenenblat and C. L. Terng, Bäcklund's theorem for n-dimensional submanifolds of R^{2n-1} , Ann. Math. 111 (1980), 477-490.
- [7] C. L. Terng, A higher dimensional generalization of the sine-Gordon equation and its soliton theory, Ann. Math. 111 (1980), 491–510.
- [8] _____, Soliton equations and differential geometry, Jour. Diff. Geom. 45 (1997), 407-445.

Department of Mathematics Dongguk University Seoul 100-715, Korea *E-mail*: jpark@dgu.edu