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ISOMETRIC IMMERSIONS OF MANIFOLDS
INTO SPACE FORMS WITH THE
SAME CONSTANT CURVATURES

JOONSANG PARK

ABSTRACT. We study a unifying method to obtain nondegenerate
isometric immersions of manifolds of constant sectional curvatures
¢ with flat normal bundles into the space forms of curvature ¢ for
c=-1,0,1.

1. Introduction

The problem of immersions of the space forms N™(c) into the space
forms N™%(¢’) is one of the most important problems in differential ge-
ometry. The first result about this was given by Hilbert [3], who proved
that a complete 2-dimensional Riemannian manifold of constant nega-
tive curvature, say, the hyperbolic space form H? cannot be isometrically
immersed into 3-dimensional Euclidean space R3. If the dimension of
H™ is bigger than 2, much has been known, even for the local immer-
sions. A starting work on it was due to Cartan [2]. He proved that
N™(c) cannot be locally, isometrically immersed in N2"~2(c + 1), but
can be into N2"~!(c + 1). Moreover, if such an immersion exists, then
the normal bundle is automatically flat. Later, many results have been
obtained for this problem in [4], [5], [6], [7], [8]- In particular, Terng [8]
studied immersions of N™(c) in N?"(c) for each case ¢ = —1,0, 1, sepa-
rately, using the so-called n-dimensional systems on symmetric spaces.
This work was extensively generalized to an arbitrary codimension case
in [1], recently.
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In this paper, we give a simple proof for local nondegenerate immer-
sions N"(c) into N***(c) with flat normal bundles for k > n, unifying
all the cases ¢ = —1,0,1 using only one real symmetric space related
to isometry groups of N"*%(c). Also, we investigate in detail on the
geometric meaning of the conditions of nondegeneracy and flat normal
curvatures for such immersions.

2. Submanifolds in a space form

The space form N™(c) is the complete, simply connected Riemannian
manifold with constant sectional curvature c. For example, when ¢ =
0,1, or —1, it is the Euclidean space R", the unit sphere S, or the
hyperbolic space H".

Suppose X : M™ — N™*(c) is an isometric immersion. Take a
local orthonormal frame field eg,--- , e,k on N"T*(c), so that if when
restricted to M, ej,--- ,e, are tangent to M. From now on, we shall
use the following index convention:

1<AB,C<n+k, 1<ijk<n, n+l<apfy<n+k.

Let wa be the dual coframe to ea, that is, wa(eg) = dap. The first
fundamental form on M is given by I = >, w; Qw;. Let wap be the con-
nection 1-form corresponding to the canonical connection d on N™*+%(c),

deg = 263 KRWBA.
B

This induces the Levi-Civita connection V on M by
Ve; = Z e; ® Wiy,
J
and the structure equations on M are

(2.1) dwi = — Zwij A Wy.
J

The Gauss, Codazzi and Ricci equations are

(2.2) dw;; =-Zwikl\wkj~Zwia/\waj+cwi/\wj,
k a
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(2.3) dwio = — Zwik A Wga — wa A Waa,
k B

(2.4) dwep = — Zwai ANwig — Zwa.y A Wyg.
i Y

From (2.2) and (2.4), we obtain the curvature 2-form Q on M and the
normal curvature 2-form Q" as

(2.5) Qi = — Zwm NWja + ¢ w; Awy,

04

(2.6) af == Zwm A wig.

The shape operator A._ in the direction e, is defined by

(2.7 A= ija®wa ® ey,

Jha
which is identified with the second fundamental form II under the metric
isomorphism TN”+¥(c) >~ TN"**(c):

(2.8) I= ija Qw; @ eq.

Jiex

Now, suppose the normal bundle vM is flat, i.e., ¥ = 0. Then there
exists a parallel normal frame {e,} and it is easy to see that all the
shape operators commute by (2.6), and thus they are simultaneously
diagonalizable.

DEFINITION 2.1. A submanifold M" is called nondegenerate if dim
{Ay,|vevy,M} =dimM =n for any p € M.

The conditions of being nondegenerate and Q¥ = 0 give a strong
geometric restriction to M. To see this, let T,M = E; ®--- ® E, be the
common eigen-decomposition for {A,[v € v,M}. Then

for some Ap, - -+, Ar € (v, M)*. The curvature normals vy, -+ , v, in v, M
are defined as the dual to A;, that is, A\;(v) = (v, vy).
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LEMMA 2.2. Suppose M" is nondegenerate and has a flat normal
bundle. Then the curvature normals vy, -- ,v, are linearly independent
and r =n.

ProoF. We claim that A,,, -+, A, span {4,| v € v,M}. For any
w € vpM, let w = v+ u € Span{v;} ® Span{v;}*. Then

Ale,— = <w7’U1>IdEz = <Uavi>IdEi = Alez
Thus A, = A,. Since M is nondegenerate, r = n and A,,, -, 4y,

should be a basis of {A,| v € v, M}. Now it is easy to see that vy,--- ,v,
are linearly independent. O

REMARK 2.3. From the above lemma, we can see that dim E; = 1
and thus there exist a unique orthonormal tangent frame {e;} which
diagonalize the shape operators simultaneously, up to signs and permu-
tations, and they are smooth. Also, it is obvious that k > n.

Now, suppose e, are a parallel orthonormal normal frame, i.e., wag =
0. The curvature normals v; can be expressed as

(2.9) v = Z Aia€as

where, Ao = (€4, v;) = Ai(eq). Using this frame {e;, e}, we have
(2.10) Wia = AiaWi-

Furthermore, suppose M has constant sectional curvature c, that is,
(2.11) Qj = cwi Awj.
Then by (2.5), (2.10) and (2.11),

(2.12) > Aiadja =0 for i#j,

and hence the curvature normals v; are orthogonal. From the Codazzi
equations (2.3), using (2.10) and w,g = 0, we obtain

(213) d/\ia (ej) + (Aia — Aja)’)’iji =0 fori ?é j,
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(2.14) ()\ia — Ak:a)’)/ikj = (Aza — )\ja)'yijk fOI‘ diStinCt i,j,k,
where Wij = Zk YVijkWk-

Put b; = 1/|v;]. Multiplying A;, to (2.13) and (2.14) and summing
up over ¢, we obtain

db; .

vi|%yi6 =0 for distinct 4,5,k, and 7 = (e5) for i
J ; 3

Therefore,

(2.15) Wi = dbi(e;) ~ dbs(es)

Wi Wi.
b; b,

PROPOSITION 2.4. Suppose M™ is a nondegenerate submanifold of
N™*¥(c) with constant sectional curvature ¢ and a parallel normal frame
eqo. Then there exists a coordinate system (z1,--- ,%,) such that e; =
B —6% is a principal tangent frame.

PROOF. By (2.15), we see that V., e; = ’ﬂ’ib—(’fzj)ei. It is a direct cal-

culation that
[biei’ bjej] = Vi,e;bje5 — vbjej bie; = 0. O

We now conclude the local geometry of the above submanifold as
follows;

THEOREM 2.5. Let X : M® — N"**(c) be a nondegenerate local
immersion of the Riemannian manifold M" of constant sectional cur-
vature ¢ with flat normal bundle. Then. for a local parallel normal
frame e,, there exists a curvature coordinate system (:cl, s ,xn), a
map b = (by, -~ ,b,)" and a k x n matrix-valued B; = (b;;) such that
BtB; = Id and the first and second fundamental forms are given by

I=> bidz?, T=) bjibidz? ® eny;.
i ij
PROOF. It remains only to prove the existence of B; and the second
fundamental form given as above. Let ¢; = 51;5% Then w; = b;dx;.
Define b;; = A; n4;b;. Then by (2.10),
Win+j = )\i,nﬂwi = bjidl‘i.
Hence, the second fundamental form is given as above. The orthonor-

mality of the columns of B; follows from the fact that the curvature
normals v; = ), Aia€q are orthogonal and b; = 1/|v;]. d
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3. G/K Systems

G/K systems were introduced for a symmetric space G/K by Terng
in [8]. We will review definitions briefly. For more details, see [8].

Let G/K be a rank n symmetric space, o : G — G the corresponding
involution on the Lie algebra G of G, G = K 4+ P the Cartan decompo-
sition, and A C P a maximal abelian subalgebra. Let a{,...,a, be a
basis for A consisting of regular elements with respect to the Ad(K)-
action on P. Let AL denote the orthogonal complement of A in G with
respect to the Killing form. Then G/K system for v : R* - PN A~ is

[ai,vz,] = [aj,v5,] = [[ai, 0], [a,v]], 1<i#j<n,

where, v,, = 88—;,;. This system is equivalent to the following Lax pair:

0 0
[Bxi + Aa; + [ai, 7], oz, + Aa; + [aj,v]] =0 forany AeC.

The Cauchy problem for G/K system can be solved for any generic data
decaying rapidly along (x1,0,...,0) (cf. [8]).

We can also express G/K system in terms of a connection 1-form on
the trivial principal bundle R™ x G on R™. To see this, we need the
following proposition, which can be proved by a direct computation.

PrOPOSITION 3.1. Given smooth maps A; : R™ — G for 1< i < n,
the following statements are equivalent:
(i) E;, = EA; is solvable for E : R" — G,
(i) [p2; + Ai, 52 + 451 =0,
(iv) d@ + 6 A0 =0, where 0 is the G-valued 1-form 3., Az, dz;.
In this case, we call E a trivialization of 6 and it satisfies E~'dE = 6.

Suppose E is a trivialization of §, E"1dE = 6. Let g : R® — G. The
gauge transformation of E by g is defined as gx E = Fg~!. This induces
a new flat connection

(Eg~Y)"'d(Eg™") = g8g™" — dgg™".

1

We call g* 0 = gfg—! — dgg—!, the gauge transformation of 8 by g.
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It is easy to see that v is a solution for G/K system if and only if
the following one-parameter family of G ® C-valued connections on R
is flat;

n

(3.1) 0y = Z(ai)\ + [a;, v])dz;.
i=1
ProprosIrTION 3.2. Let ay,--- ,a, be a basis of a maximal abelian

subalgebra A in P, and u; : R* — ICj smooth maps for 1 < i < n,
where K 4 is the centralizer of A in K. If

n

(3.2) Or = (a:+u;)dz;

i=1
is a flat connection 1-form on R™ for all A € C, then there exists a unique
map v : R* — PN At such that u; = [a;,v].

PrOOF. We may assume that ay,--- ,a, are regular by changing a
basis and coordinates. Since 8, is flat for all A,

(3.3) [ai, u;] = [aj, ud]-

Because a1, ,a, are regular, ad(a;) maps PN A~ isomorphically to
K. Hence there exists a unique v; € PN A" such that u; = ad(a;)(v;)
for 1 < 5 <n. Then (3.3) implies that

ad(a;)ad(a;)(v;) = ad(a;)ad(a;)(vs).

Since [a;,a;] = 0, ad(a;)ad(a;) = ad(a;)ad(a;). But ad(a;) is injective
on PN A+ so that v; = v;, which will be denoted by v. O

Thus the existence of the solution v of the system is equivalent to the
flatness of the connection 8, of the form (3.2).

To explain the geometry of a submanifold M™ in N™t¥(c), we need
to know the isometry group of N"T*(c). First, we identify R"** with
R™** x {1} ¢ R***+! by X < (X,1). Then all the space form N"+¥(c)
can be regarded as subsets of the vector space R*t*+!, It is well-known
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that the isometry groups of R**+*, §"*+* and H"** (corresponding to 0, 1
and —1, respectively) are

{(’g ?) | A€ O(m+k), ¢ enwk},

On+k+1)={A€GL(n+k+1,R) | A'A=1}

and
O(n+k1)={AeGLn+k+1,R) | A'JA=J},

where J = diag(1,---,1,-1).

LEMMA 3.3. The Lie algebras of the isometry groups of N"t¥(c) can
be expressed as the Lie algebra

G. = {(_lc;t g) | Y eso(n+k), & ER”‘”“}.

PRrOOF. The Lie algebras of the isometry groups of N"™*(c) are of
the form

{(30’ g) | ¥ eson+k), ¢ eR"*’f}, so(n+k+1) and so(n+k, 1),

respectively. It is trivial that all of these are G, for ¢ = 0,1 or —1,
respectively. (|

Now, for G., define an involution

Ii 0 0 I. 0 0
oX)=0 -I, 0 |X|0 -I, 0], Xeg.
0 0 -1 0 0 -1

Here, the matrix is partitioned into 3 x 3-blocks with sizes (k,n, 1), and
I, is the n x n identity matrix. Then the Cartan decomposition becomes
G. = K+ P, where

A 0 0
K= 0 B a ’ A €so(k), B €so(n), ai € R" 3,

0 —cat 0
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0 C a9
P = -Ct 0 0 ‘Cis a k x n matrix, a} € R
—cat 0 O
Put
0 -D 0
A={|D 0 o {Dz@%%dU:Obm#j ,
0 0 0

then it is an abelian subalgebra in P with a basis

0 -D; 0
a; = Dl 0 0 ’ 1SZ_<_77/,
0 0 o0

where D; has 1 as the (4,7)-entry and zero elsewhere. Let (G.) 4 denote
the centralizer of A in G.. Then P N (G.)3 is the space of elements of
the form

0 0 F b

w| 0 0 GO

S| -Ft -Gt 0 0)°
bt 0 0 0

where v is partitioned into 4 x 4-blocks with sizes (n,n — k,n,1) and
F= (f”) € gl(n) with f;; = 0.

Since v is completely determined by (F, G, b), we will say that (F,G,b)
is a solution of this system instead of v being a solution.

Put § = diag(dzi,--- ,dz,). Then the connection 1-form €, in (3.1)
becomes

SF'—F§ §G'  —X 0

[ a5 0 0 0

(3.4) O = A6 0 6F— F'§ b
0 0 —cbts 0

It is obvious that

PROPOSITION 3.4. (F,G,b) is a solution of G/K-system associated
to G, if and only if 8, in (3.4) is flat for any A.
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4. Main Theorems

THEOREM 4.1. A nondegenerate local immersion X of the Riemann-
ian manifold M™ into N™*¥(c) of constant sectional curvature ¢ with a
flat normal bundle as in Theorem 2.5 gives rise to a solution (F,G,b) of
the system associated to G..

In fact, they are related by

F=(%=), w=6F-F's and BidB =6F -Fs
7

PrOOF. Choose a parallel normal frame {e,} and a tangent frame
{e;} as in Theorem 2.5 so that w; = b;dx;. Put b = (by,--- ,b,)". Then
from the structure equations, Gauss, Codazzi and Ricci equations,

) 0 -Bis 0
Gi=|6B w
0 —cbtd O

is flat. It is an easy computation that

_ 0 —ABi§ 0
(4.1) 0, = | A6B! w ob
0 —cbté 0
is also flat for any .
(b

Let F = (f;;) € gl(n), where f;; = ;i_zf for i # j and fi; = 0. Since
the connection 1-form w = (w;;) on M satisfies

(——)ﬂd:ci — Qﬂ)_tdxj for i j
b; b;

ij =
by (2.15), we obtain
(4.2) w = §F — F'6.

On the other hand, from the flatness of 6,

dBi A6 = —B16 Aw = Bi(6F" = F§) A S
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and thus
(4.3) dB; = Bl(éFt —Fé6)+C6

for some k x n matrix C. Extend B; to B = (B, B;) € O(k). Then
from (4.3),

(4.4) BLdB, = BLCS.

Since B~ 'dB is flat and

- (3 1)
we have
(4.5) dBY A dBy + BLdB, A B¢dB, + BLdBy A BidB, = 0.
By (4.4),

B!dB, = (dBLB;)" = —(B%dB,)! = —6C*Bs.

So it follows from (4.5) that BidB; is flat, and hence h~'dh = BidB,
for some h € O(k —n). Thus if we take a gauge transformation on 6

by
I, 0 0 O B 0 o0
0 h 0 O
g= -1 0 I, 0],
0 0 I, O 0 0 1
0 0 0 1

then the resulting flat connection 1-form @) is

BidB, —6C'Byht —-Xé 0

~ hBLC§ 0 0 0
Or=gx0y= )\26 0 w b
0 0 —cbt 0

Set G = —hBLC. From (4.3), we have BtdB; — (6F" — F§) = Y §, where
Y = B!C. Since the left-hand side is skew-symmetric, so is ¥'§. But
Y$ = —6Y* implies that ¥ = 0. It follows that the flat connection g0y
is of the form ) defined by (3.4). Therefore (F,G,b) is a solution of the
system associated to G.. O

Conversely, we have
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THEOREM 4.2. A solution (F,G,b) of the system associated to G,
gives rise to a nondegenerate local immersion X, of M™ of constant
sectional curvature ¢ with flat normal bundle into N™"*%*(c), which has
a parallel normal frame {e,} and a coordinate system (z1,- - , ) such
that the first and second fundamental forms are given by

I=Y bidz}, =) b;bide} ®eny;.

(2]
PrROOF. We have a flat connection 6, as in (3.4) obtained from

(F,G,b).
¢t _ t
Since n = <6F*G5F6 6(? ) is flat, B'dB = n for some B € O(k).

Taking a gauge transformation h = (g ?) on 0, gives h * 0y = 0y,

where 0, is of the form (4.1). Now, let E be a trivialization of 6:, that
is, dE = E6,. Denote by e, e;, X, the columns of E. Then from

d(ea? =8 XC) = (ea) € -Xc) ély
we obtain

dXc =) bidei®ei, deny; =) bjidz; ® e,

and thus e, are a parallel normal frame and I is given as above. There-
fore, X, gives a desired immersion. O

We can conclude that there is a correspondence between the nonde-
generate isometric immersions of n-dimensional manifolds of constant
sectional curvatures ¢ with flat normal bundles into N™"**(c) and the
solutions of systems associated to the Lie algebra G, for k > n.
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