DOI QR코드

DOI QR Code

Nonlinear Dynamic Analysis on Low-Tension Towed Cable by Finite Difference Method

유한차분법을 이용한 저장력 예인케이블의 비선형 동적해석

  • 박한일 (한국해양대학교 해양개발공학부) ;
  • 정동호 (한국해양대학교 대학원)
  • Published : 2002.02.01

Abstract

In this study nonlinear dynamic behaviors of towed tow-tension cables are numerically analysed. In the case of a taut cable analysis, a bending stiffness term is usually neglected due to its minor effect but it plays an important role in a low-tension cable analysis. A low-tension cable may experience large displacements due to relatively small restoring forces and thus the effects of fluid and geometric non-linearities become predominant. The bending stiffness and non-linearity effects are considered in this work. In order to obtain dynamic behaviors of a towed low-tension cable, three-dimensional nonlinear dynamic equation is described and discretized by employing a finite difference method. An implicit method and Newton-Raphson iteration are adopted for the time integration and nonlinear solutions. For the calculation of huge size of matrices. block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with those of a in-house program of WHOI Cable with good agreements.

본 연구에서는 저장력 예인케이블의 비선형 동적거동을 수치적으로 해석하였다. 고장력 케이블해석에서는 흔히 무시되는 굽힘강성의 효과가 저장력 케이블에서는 중요한 역할을 하므로 본 연구에서는 이를 고려하였다. 또한 저장력 케이블에서는 대변위가 발생하기 쉬우므로 기하학적인 비선형 및 유체 비선형 효과가 크므로 이를 고려하였다. 저장력 예인케이블에 대한 3차원 비선형 운동방정식을 수립하고 유한차분법을 적용하여 이산화 시켰다. 시간적분에 있어서 안정적인 해를 얻을 수 있는 음해법(implicit method)을 적용하였으며 비선형 해를 구하기 위하여 Newton-Raphson 반복법을 사용하였다. 케이블과 같이 양단경계조건을 갖고 대각선 주변 성분만 있는 행렬식을 계산하는 경우에는 Gauss-Jordan 방법 등과 같이 일반적인 방법 보다 블록삼중대각행렬 풀이법이 계산시간을 상당히 줄일 수 있음을 알 수 있었다. 몇 가지 예제해석을 수행하였으며 실해역 실험결과에 의해 이미 검증되어 있는 케이블 해석프로그램인 WHOI Cable 프로그램의 해석결과와 비교 검토한 결과 서로 잘 일치함을 알 수 있었다.

Keywords

References

  1. A.P. Dowling, 'The dynamics of towed flexible cylinders: Part 1. Neutraly buoyant elements.', Journal of Fluid Mechanics, Vol.187, 1988
  2. C.M. Ablow and S. Schechter, 'Numerical simulation of undersea cable dynamics.', Ocean Engineering, Vol.10, No.6, 1983
  3. C.T. Howell, 'Numerical analysis of 2-D nonlinear cable equations with applications to low tension problems.', J. of Offshore and Polar Engineering, Vol.2, No.2, 1992
  4. H. Shin, 'Analysis of extreme tensions in a snapping cable.', Proceedings of the First International Offshore and Polar Engineering Conference, Vol 2, 1991
  5. H.M. Irvine, 'Cable structures', MIT Press, 1981
  6. J.V. Sanders, 'A three-dimensional dynamic analysis of a towed system.', Ocean Engineering, Vol.9, No.5, 1982
  7. J. J. Burgess, 'Equations of motion of a submerged cable with bending stiffness', Proceedings of the Eleventh International Offshore Mechanics and Arctic Engineering Conference, ASME, Canada, Vol. 2, 1992
  8. J.W. Leonard, 'Nonlinear dynamics of cables with low initial tension.', Journal of Engineering Mechanics (ASCE), Vol.98, No.2, 1972
  9. J.I. Gobt, M.A. Grosenbaugh, and M.S. Triantafyllou, 'WHOI Cable: Time domain numerical simulation of moored and towed oceanographic systems.', Woods Hole Oceanographic Institution, 1997
  10. M.S. Triantafyllou, 'Dynamics of cables: Towing cables, and mooring systems.', The Shock and Vibration Digest, Vol.23, No.7, 1991
  11. M.S. Triantafyllou and G.S. Triantafyllou, 'The pardox of the hanging string : An explanation using singular perturbations.', The Journal of Sound and Vibration, Vol.148, No.2, 1991
  12. M.S. Triantafyllou and C.T. Howell, 'Dynamic response of cables under negative tension : An ill posed problem,', Journal of Sound and Vibration, Vol.173, No.4, 1994
  13. W. H. Press and S.A. Teakolsky, 'Numerical Recipes in Fortran 77.', Cambridge University Press, New York, 1986
  14. S. Hong and S. Y. Hong, 'Effects of mooring line dynamics on position keeping of a floating production system.', Proceedings of the Seventh International Offshore and Polar Engineering Conference, Vol 2, 1997

Cited by

  1. Experimental Study on Vortex Induced Vibrations of Highly Flexible Immersed Pipe Subjected to Top End Oscillations vol.130, pp.4, 2004, https://doi.org/10.1061/(ASCE)0733-950X(2004)130:4(207)
  2. Characteristics of VIV in multi-degree-of-freedom tensioned beams using a numerical method vol.17, pp.3, 2012, https://doi.org/10.1007/s00773-012-0166-1