Deriving Local Association Rules by User Segmentation

사용자 구분에 의한 지역적 연관규칙의 유도

  • Published : 2002.02.01

Abstract

Association rule discovery is a method that detects associative relationships between items or attributes in transactions. It is one of the most widely studied problems in data mining because it offers useful insight into the types of dependencies that exist in a data set. However, most studies on association rule discovery have the drawback that they can not discover association rules among user groups that have common characteristics. To solve this problem, we segment the set of users into user-subgroups by using feature selection and the user segmentation, thus local association rules in user-subgroup can be discovered. To evaluate that the local association rules are more appropriated than the global association rules in each user-subgroup, derived local association rules are compared with global association rules in terms of several evaluation measures.

연관규칙 탐사기법은 트랜잭션들을 대상으로 항목간 또는 속성간의 연관관계를 발견하는 방법으로, 데이터 집합의 구조를 쉽게 통찰할 수 있다는 장점으로 인하여 활발히 연구되어 왔다. 그러나 현재까지의 연구들은 전체 사용자 중 공통적인 특성을 지닌 사용자 그룹이 존재할 경우, 이러한 그룹별 연관규칙을 찾아낼 수 없다는 한계점을 지닌다. 본 논문에서는 이러한 점을 해결하기 위하여, 속성선택 및 사용자 구분 기법을 이용하여 사용자를 부분집합으로 구분하고 그 부분집합별로 연관규칙을 발견한다. 또한 위와 같이 얻어진 지역적 연관규칙이 전체 사용자를 대상으로 한 전역적 연관규칙보다 해당 부분집합에 더욱 적합하다는 사실을 여러 연관규칙 평가치를 이용하여 평가한다.

Keywords

References

  1. R. Agrawal and R. Srikant, 'Fast algorithms for mining association rules large databases'. In VLDB-94
  2. R. Srikant adn R. Agrawal, 'Mining Sequential Patterns Generalizations and Performance Improvements', Proc. of the Fifth Int'l Conf. on Extending Database Technology(EDBT), Avignon, France, March 1996
  3. R. Srikant, and R. Agrawal, 'Mining quantitative association rules in large relational tables', In Proceedings of the ACM SIGMOD Conference on Management of Data, Montreal, Canada, June 1996 https://doi.org/10.1145/235968.233311
  4. Ng. R. T. Lakshmanan, L. Han, J. 'Exploratory mining and pruning optimizations of constrained association rules.' SIGMOD-98. 1998 https://doi.org/10.1145/276304.276307
  5. S. Brin and R. Motwani, 'Dynamic itemset counting and implication rules for market basket data,' SIGMOD Record(ACM Special Interest Group on Management of Data), 26(2):255, 1997 https://doi.org/10.1145/253260.253325
  6. A. Sarasere, E. Omiecinsky, and S. Navathe, 'An cfficient algorithm for mining association rules in large databases'. In 21st Int'l Conf. on Very Large Databases(VLDB), ZTrich, Switzerland, Sept. 1995
  7. J. S. Park, M. S. Chen, and P. S. Yu. 'Efficient parallel data mining for association rules.' In Proc. 1995 International Conference on Information and Knowledge Management, Baltimore, MD, November 1995 https://doi.org/10.1145/221270.221320
  8. H. Toivonen, 'Sampling large databases for association rules.' Proc. 22nd VLDB, 1996
  9. R. J. Hilderman and H.J. Hamilton. 'Knowledge discovery and interestingness measures: A survey.' Technical Report CS 99-04, Department of Computer Science, University of Regina, October 1999
  10. A. Silberschatz and A. Tuzhilin. 'On subjective measures of interestingness in knowledge discovery'. Proceedings of the First International Conference on Knowledge Discovery and Data Mining, 1995
  11. C. Silverstein, R. Motwani, and S. Brin. 'Beyond market baskets: Generalizing association rules to correlations.' In SIGMOD, 1997 https://doi.org/10.1145/253262.253327
  12. P. N. Tan and V. Kumar, 'Interestingness Measures for Association Patterns : A Perspective.' TR00-036. ftp://ftp.cs.umn.edu/dept/users/kumar/WEB/, 2000
  13. Deogun,J ., Choubey, S. 'On Feature Selcction and Effective Cjassifiers.' Journal of ASIS 49, 423-434, May 1998
  14. L.Talavera. 'Feature selection as a preprocessing step for hierarchical clustering.' In Proceedings of the 16th International Conference on Machine Learning, pages 389-397. Morgan Kaufmann, 1999
  15. R. Kohavi, John, G. 'Wrappers for Feature Subset Selection.' In Artificial Intelligence journal, special issue on relevance, Vol. 97, No. 1-2 (pp.273-324), 1997 https://doi.org/10.1016/S0004-3702(97)00043-X
  16. D. Lewis, 'Feature selection and feature extraction for text categorization.' Proceedings of Speech and Natural Language Workshop (pp. 212-217). San Francsico: Morgan Kaufman, 1992 https://doi.org/10.3115/1075527.1075574
  17. 문홍기. '배경지식을 황용한 연관규칙 발견 및 확장.' 숭실대학교 석사학위 논문, 2000