96

AR EER: AFHY A A 8¢ A 1 F(20022)

AA-EAAH A= HL7 Q39 /A5

el AA 9 7

(Design and Implementation of a Reusable and Extensible
HL7 Encoding/Decoding Framework)

2 e

+ -
ZEMT wagE" geosg

(Jungsun Kim) (Seung-Hun Park) (Yunmook Nah)

2 e HL7 (Health Level 7)2 IHealthcare 38732] o2 Al2w|7to] U4 2 #)Fr e w#E 7}
A e =4 2E =222 BF A3Y FHd 48 TdS HLT7 d4A F4S Adsn Ak
B =RME WA)R] A Ld(Message Object Model)®} WAz A 2] #As(Message Definition
ch051tory)—' ol &3le] R, AMAEA, Hggde] B HLY Slag/vay ZHdH=2e 494 &2 +
&AM, WA Ax) 2 HL7 WARAE s AT 25 ke g9 fAE ‘-%E}‘—H‘_
'7%"«‘}7—‘"] HIL7 MAA fHozs, AZHE, 95, HXVE 53 22 (17 AAXNY EF FHLAS T
g =84 #AE waske A ZEGE A8 7AE F2F AGArEE UESES st ok fA
A MH Ede SHE HEHFHQ volH el AT glo] ERFLE HLY 9209 t2HE F3E
AEF 3o 7] fEe) Hie =Yooz oo oA W MR A2YES 4F dFT F UEE
gk 9, HL7 dARES Fosta Jd& 7 delxule]=d WA Fe Jgdie RF HLT7 WAA
o] =AYz ¢lAvs tare] FEe] gakS ua] ¢ e)k AUrE AAA Y AR
= =208 day Zzhe] Y4HE(F, WAA A Zd=E FH8F HL7 wAA A4He 1zE " HL7 w4
A EAd)e] Wate gHAd 9588 AR | /84 AHRRETh
E =RdMe =g HL7 9129 d t2se] 788 43 JAVAE o439A4%, AAE Q=2
/MAazd =Y YYzE 2l=vst UEEE ActiveX, JAVABEAN E CORBA A T3 o] =¥e
RE AXHEEA 44 74HE £ URE 31 Foh
7192 : HL7, ¥4ARA 28 dlalz] A4 2, ¢lz3d/dan, =943

Abstract The Health Level Seven (HL7), an international standard for electronic data exchange
in all healthcare environments, enables disparate computer applications to cxchange key scts of clhinical
and admimstrative information. Above all, it defines the standard HL7 message {ormats prescribed by
the standard encoding rules.

In this paper, we proposc a flexible, reusable, and extensible ITL7 encoding and decoding framework
using a Message Object Model (MOM) and Message Definition Repository (MDR). The MOM
provides an abstract HI.7 message form represented by a group of objects and their relationships. It
reflects logical relationships among the standard HL7 message elements such as segments, fields, and
components, while enforcing the key structural constraints imposed by the standard. Since the MOM
completely eliminates the dependency of the HL7 encoder and decoder on platform-specific data
formats, it makes it possible to build the encoder and decoder as reusable standalone software
components, enabling the interconnection of arbitrary heterogeneous hospital information systems
(HISs) with little effort. Moreover, the MDR, an external database of key definitions for HL7
messages, helps malke the encoder and decoder as resilient as possible to future modifications of the

FAHY: QedEtn FHETeh ap Y eEoEE R T EAE a8
jskim@cse hanvang ackr yrnah@dankook.ac kr
ol g - AHYdn AXQREy 2 =EEE - 001 59 89

parksh@khu ac kr Aty - 2001d 109 139

A& F4430E HT Q23/927 ZdQ9ae) 44 % 78 97

standard HL7 message formats. It is also used by the encoder and decoder to perform a well-
formedness check for their respective inputs (ie., IIL7 message objects expressed in the MOM and

ecncoded HL7 message strings).

Although we implemented a prototype version of the encoder and decoder using JAVA, they can
be easily packaged and delivered as standalone components using the standard component frameworks

like ActiveX, JAVABEAN, or CORBA component.
HL7, Hospital Information Systems, Message Objoct Model, Encoder/Decoder,

Key words -
Frameworks

1. Introduction

The Ilealth Level Seven (HL7) [1], an interna-
tional standard for electronic data exchange in all
healthcare environments, enables disparate computer
applications to exchange key sets of clinical and
administrative information. Above all, it defines the
standard message formats prescribed by the
Therefore, the IIL7

encoder and decoder are considered to be the

slandard cncoding rules.
integral parts of future hospital information systems
(ITISs). Specifically, the encoder generates a stream
of TIL7 messages from specialized data sets of a
source HIS, and the decoder is responsible for
extracting information from the received ITL7
message strearn for a target HIS.

Since the standard defines only the formats and
legitimate encoding rules for the HL7 message
types, there exist many ways to implement the
encoder and decoder. However, as shown in Figure
1, a typical implementation of the encoder and
decoder may cause a tremendous waste of time and
cffort since they cannot he reused across
heterogeneous HISs. The reason for this is that
despite their inherent functions are invariant, they
must be implemented for each HIS system that uses
its own specific data [ormats. If data formats on
either side are changed or replaced, the
corresponding encoder and/or decoder must also be
properly adjusted. This is considered as a serious

maintenance problem. The problem lies in the fact

HIS A's His B's
HLT HL?
data sots & * HL? * * * data sets &
representation 1 (LAl Mossage Bdadl ' r-ccccntation

Fig. 1 A typical HI.7 encoding and decoding scheme

that the encoder and decoder are tightly coupled
with site-specific data formats that may be different
from one HIS to another. To overcome this problem,
the encoder and decoder must be designed to be
independent of platform-specific dala formats.

In this paper, we propose a novel HL7 encoding/
decoding framework that makes it possible to build
a flexible, reusable, and extensible HL7 encoder and
decoder. We also present a JAVA [2] irnplementa—
tion of a prototype encoder and decoder using this
framework.

The framework is characterized by two salient
features, called a Message Object Model (MOM)
and Message Definition Repository (MDR).

First, the MOM provides
message form represented by a group of objects

an abstract IIL7

and their relationships. It reflects logical

relationships among the slandard HL7 message
elements such as segments, fields, and components,
the key

standard.

structural constraints
MOM
completely eliminates the dependency of the L7

while enforcing

imposed Dby the Since the
encoder and decoder on platform-specific data
formats, it makes it possible to build the encoder
standalone software

and decoder as reusable

components, enabling the interconnection of
arbitrary heterogenecus HISs with little effort. The
idea of representing HL7 messages as objects is
not new [3]. However, we focus our attention on
the simplicity of the model which nevertheless can
not only reflect the structure of HL7 messages
correctly, but also enforce the key structural
constraints imposed by the standard.

Second, the MDR, an external database of the

key definitions for HL7 messages, helps make the

o8 ARAGY=EA: HERY A A 8 W A 1 BA02D

encoder and decoder as resilient as possible to
future modifications of the standard HL7 message
formats. It is also used by the encoder and decoder
to performm a well-formedness check for their
respective inputs (i.e., HL7 message objects and
encoded HL7 message strings).

This paper

following section, we briefly review the standard

is organized as follows. In the

HL7 message formats. In section 3, the MOM is
the MOM-based HL7
encoding/decoding framework is presented. A JAVA

described. In section 4,
implementation of the HL7 encoder and decoder is
briefly explained in section 5. Finally, concluding
remarks are given in section 6.

2. Brief Overview of the HL7 Message
Formats

A message is the smallest unit of HL7 data
transferred between two communicating parties. It
is comprised of a group of segments in a defined
sequence. A segment is a logical grouping of data
fields. Segments of a message may be required or
optional. They may occur only once in a message
or they may be allowed to repeat. A field 1s a
string of characters which may be regured or
optional. Like segments, fields of a segment may
occur only once in a segment or they may he
allowed to repeat. A field may consist of a group
of components in a defined sequence which may be
Finally,
consist of a group of subcomponents in a defined

required or optional. a component may
sequence which may be required or optional. This
hierarchical message struclure can represent very
complex information very effectively. Figure 2
shows an example of HL7 message.

As shown in Figure 2, certain special characters
are used in constructing a message. A segment is
terminator which s
Fields,

components, and subcomponents are delimited by a

terminated by a segment

always a carriage refwn character.
field separator (‘|'), a compoment separator ('°'),
and a subcomponent separator ('&'), respectively.
For repeated fields

components in a field, a repetition separator (™) is

in a segment or repeated

of the
terminator, are

them. All
except the

used to separate separator

characters, segment

negotiable and configurable. The characters shown
inside parentheses in the above sentences denote

the default ones. Using these separators, a

hierarchically structured message can be

represented as an encoded character stream.

Msﬁl"—\&lmi‘llmnmml‘lmﬂl199807201126|]AD‘I""AO:I.I Yy
(1 Mssonoouﬂz 3| ol
T

i W|m1|199907201123|<cr> e

o

u'FIDICI.I|PA'.EID1234“5"M:L1|Ia'amea"swrﬁmstonl119570329|M| ' [;x

i 1€12200 N ELM SQREEF”GREWVILLE"NC"274DIH1020lGIu]

L (919)375-1212| (919) 2T1-3434) |5 | |X454337 *200) k!
‘ ;23455739|9e7554mcy<m>r '

s
sl

“\W1|1II EIIII0047
N TRMAI
i

Fig. 2 An example of HL7 message

3. The Object Madel for the HL7 Messages

In this section, we propose an object model for the
HL7 messages which we call the Message Object
Model (MOM).
sented as an object [4]

In MOM, an HL7 message is repre—
(called an HL7 message
object). An HL7 message object is an abstract form
of HL7 message, which is used as a source for the
encoder and at the same time as a target for the
decoder, in the HL7 encoding/ decoding framework
to be explained in the next section.

Figure 3 shows the class diagram for the MOM

HL7Mesaaga TqT_;bss;:r:;: ==
HL7 AtemSngriant Hmeu Segment
(ﬁ n =

<<abstmcta >
HL7Field

Al

T
PirGraugFuid |] HL?AmW‘o_“ Ry e
L) { J

\

HL7GroupG

HL7 AtamCy

Fig. 3 A Message Object Model (MOM)

AAPEg B4 eE HT 92

using the Unified Modeling Language (UML) [5],

Hlustrating the classes that compose an HLY
message object and their various relationships. The
organization of the classes reflects the logical
relationships among the constituent elements of an
IIL7 message in a simple and elegant way, while
enforcing certain structural constraints imposed by
the HL7 standard. Therefore, any HL7 messages
can be effectively represented using the MOM.

In the MOM, an HL7 message is modeled as an
instance of the HL7Message class that provides an
APl for creating and setting values of various
fields contained in it. Instances of the HL7Message
class rmmaintain a set of top-level HL7Segment
objects. we mean the

By top-level segments,

segments that are not contained in another

segment. Segment objects are either instances of
the class HL7AtomSegment (ie., atomic segments)
or instances of the class HL7GroupSegment (ie.,
The HL7AtomSegment is a

logical segment which corresponds to a standard

group segments).
HI7 segment such as Message Header (MSH),
Event Type (EVN), Patient ID (PID), Patient Visit
(PV1) etc. The HL7GroupSegment is a structural
which
segments and other group segments. A group of

segment can contain a set of atomic
segments that must appear together in a defined
sequence must always be contained in a group
segment. Any repeatable segments must also be
contained in a group segment. As you may have
noticed, the standard GOF Composite Pattern [6] is
applied here to model the relationship among the
classes for segments.

Instances of the HL7AtomSegment class consist
of a set of HL7Field objects. The field objects are
either instances of the class HL7AtomPField (ie.,
atomic fields) or instances of the class HL7Group
Field (ie., group felds). The HL7AtomField is a
logical field that corresponds to a standard HL7
field defined in its
HL7GroupSegment, the

enclosing segment. Like

HL7GroupField is a
structural element that can contain a group of field
objects. However, unlike the HL7GroupSegment,

the HL7GroupField can contain only the atomic

=/4

2P ZHAHIY 44 2 78 99

field objects that are repeatable. It canmot contain
any group field objects. This prohibits a recursive
nesting of fields, as is specified by the standard.
The relationship between a field and its
components can be modeled the same way as the
one between a segment and its fields.

Notice that there exist no classes defined in the
MOM for the HL7 subcomponents. The reason for
this is that subcomponents for a component can be
safely modeled as a group of primitive components
that are contained in a composite component. A
primitive component is represented as an instance
of the HL7AtomComponent class. A composite
component is represented as an instance of the
HL7GroupComponent class.

Beware that although the HL7GroupField class
and HL7GroupComponent class have a similar
naming pattern, their usage is different. While the
former is used as a container for repeatable field
objects, the latter is wused a container for
subcomponents.

Conceptually, the MOM is similar to the DOM
(Document Object Model) [7] which represents the
XML (eXtensible Markup

Language) [89] docurnernt in an object-oriented way.

organization of an

Just as the DOM greatly facilitates the manipulation
of XML documents, the MOM allows us to access
flexibly
high-level AFI in various end-user applications.

clinical information more through 4

4. A Flexible and Robust HL7 Encoding/
Decoding Framework

In this novel HL7
encoding and decoding framework that is flexible

section, we describe a
and robust. As shown in Figure 4, the framework
is characterized by two salient features: the
Message Object Model (MOM) and the Message
Definitions Repository (MDR).

In this framework, the encoder and decoder use
HL7 message objects as the source for encoding
and as the target for decoding, respectively.
Specifically, the encoder generates an encoded HL7
message string from a given HL7 message object,

and the decoder constructs an HL7 message object

100 AR A TR

HIS
(XML, HTML, ...}

HL? HLY HL7 .
Ennuder Msssnge Decoder K

Sending
Application

(XML, HTML)

43
0
l.

Receiving
Appllcation

\« —_ e
Message Defintions
Repository

TFig. 4 A flexible and robust HIL.7 encoding/decoding
framework

from a given encoded HL7 message string. This
scheme completely eliminates the dependency of the
encoder and decoder on the platform-specific data
formats and representation. Now, since the encoder
purely depend on abstract, data
format-neutral HL7Y

operations

and decoder
message objects, their
can be completely encapsulated and
robustly implemented. This fact makes them very
good candidates for reusable software components
which may be implemented using the standard
component frameworks such as ActiveX [10],
JAVABEAN [11], or CORBA component [12].

In this framework, the encoder and decoder also
make use of an external Message Definitions
(MDR). The

information about all IIL7 messages like message

Repository MDR maintains key

type definitions, segment type definitions, feld
HL7 data type definitions,
During an encoding process, the encoder consults

attributes, and etc.
this repository not only to interpret a given HL7
message object, but also to check the validity (e,
well-formedness) of it. An HL7 message object is
considered to be well-formed if and only if it does
not violate any of the definitions prescribed in
MDR. For example,
considered to be ill-formed if any of the required

an IIL7 message object is

elements are missing, or if it viclates any of the
structural constraints imposed by the MOM. Any
invalid form of message objects are rejected. The
repository is also used by the decoder for similar
MDR makes the
operations of the encoder and decoder be as

purposes. Consequently, the

AFHe] 2A A 8 A A 1 E(@0022)

resilient as possible (o [uture modifications of the
standard IIL7 message (ormats.

Notice that, in our encoding/decoding [ramework,
we may need converters lo transform HIL7 message
objects to and from data sets represented in HIS
specific data formais {eg., XML~to-MOM/MOM-
to-XML).
decision that must be made per application basis.

What kind of converters to use is a

However, since the encoder and decoder are
shielded from these gory details, it is now possible
to plug-and-play any converters without affecting
the encoder and decoder.

As compared with the Figure 2 showing a

typical, non-reusable, and error-prone encoding/
decoding scheme, our framework makes it possible
to build the encoder and decoder that are not only
data format independent and robust, but also
flexible enough to accomodate plausible evolution of

the HL7 message delinitions in the future.

5. A Prototype Implementation of the HL7
Encoder and Decoder

In this section, we present a JAVA implemen-
tation of a prototype HL7 encoder and decoder
system based on the HL7 standard 2.3.1 [1].

5.1 The Message Definitions Repository (MDR)
(MDR) is
implemented as simple text files each of which

The Message Definition Repository
contains message type definitions, segment type
definitions, [eld attribute definitions, and data type
definitions, respectively, Tisting 1 and 2 show the
and data type definitions,
respectively. For the sake of simplicily, the other

message definitions

two definitions are not presented here.

As shown in Listing 1, a message type, say
ADT_AQ5,
type definitions

is defined as a sequence of segment
that are separated by a bar
character (). The type ADT_A05
corresponds to the ADT-pre admit a patient (event
A05) n HL7.
terminated by a carriage return. In the ADT_A(5,
"MSIT”, "EVN", "PID", and "PPV1" are all mandatory

non-repeatable atomic

message

Message type definitions are

segments. Optional non-

AAMEA T FFde HY d=29/029 e gz 44 2 73 101

ADT_AQ1 'MSH!EVNIPIDINK1OptGrp i PV1 |PV2_0}0BXOptGrp! AL
10ptGrpiDG10ptGrp i PRIOptGrp | GT10ptGrp ! InsOptGrp i ACC_
0iUBL_O!URZ_Q<CR>»

ADT_A0Z IMSHIEVN} P1dGrp<CR>»

ADT_AO3MSHIEVN | PidGrp<CR>

ADT_AQ4 \MBHIEVN IPIDINK1OptGrp i PV1 | PVZ_010BXOptGrpi AL
10ptGrpiDG10ptGrp i PR10ptGrp | GT10ptGrp | Tns0ptGrp i ACC_
0iUB1_0iUB2_Q<LCR>

ADT_A05 {MSH{EVN:PIDINK1OptGrp | PV1 iPVZ_0{0BXOptGrp! AL
10ptGrpiDG10ptGrp i PRIOptOrp ! GT10ptGrp: InsOptGrpl ACC_
DIUBL_D!UB2_0<CR>

Listing 1 HI.7 Message Definitions

repeatable alomic segment types have names with
a suffix “_0” attached. For example, "PVZ_0"
"ACC_0O", "UB1_0" and "UB2_0" represent optional
non-repeatable segments. The segment types that
have names ending with “Grp“ such as
"WK1O0pGrp” and

optional segments.

"InsOptGrp” denote repeatable

EVNIRIAI=(CR>
INLIRJAT=<CR>
IN2_0j01ATTN2<CR>
IN3_0101A} IN3KCR>
MSHIR!A!=<{CR>
NK1IRIAI={CR>
PIDIRIAI={CR>
PV1IRIAI=<CR>
PV2_Q101AIPV2<CR>
NK10ptGrpi0iGiNKICCR>
Tns0ptGrpi0iG}INT 1 IN2_01IN3_OKCRY

Listing 2 HL7 Segment Definitions

As shown in Listing 2, segment type definitions
are also lerminated by a carrigge rteturn. Each
segment type 1s defined ag below.

Segment Type Name | Qptionality | Atomicity | {
Base Segrment Type Name }

The "Segment Type Name” is a name that
appears in the message type definitions. The
“Optionality” ficld is marked either 'O’ (optional
(required segment). The

marked cither A’

segment) or ‘R’

"Atomicity” field is (atomic

segment) or ‘G’ (group segment that contains
repeatable segments). For mandatory alomic
segments, the lasl field is marlked by ‘='. For an

optional atomic segment, the last field must denote
the name of its base segment type. For example, the
base segment type for "PV2_0" is just "PV2". For a
group segment, a sequence of constituent segment
tyvpe definitions must appear in the last field.

As mentioned before, in addition to the message
and segment type definitions, our system also
maintains two definition tables as part of the MDR:
one for the attributes of HL7 fields that compose
HL7 segments, the other for the HL7 data tvpe
definitions. All
used by the encoder (decoder) to check the validity

these definitions are collectively
the HL7 message object (encoded message string)
and subsequently to generate well-formed encoded
HL7 message string (HL7 message object).

5.2 Qperations of the HL7 Encoder/Decoder

An encoder, an instance of the HL7Encoder
class, accepts as its input an HL7 message object
(e, an HL7Messqge object) and generates an
encoded HL7 message string. When the encoder’s
encode() method is invoked, it first creates a
message definition object (i.e, an instance of the
HL7M sgDefinition
Definition Repository (MDR), that comresponds to

class), using the Message
the triggering event type ol the message, say ADT
AQ5, and then subsequently constructs an encoded
message string. During the encoding process, the
encoder strictly checks the validily of the HL7
HL7Msg

invalid HL7 message

message object by consulting the
Definition. Therefore, any
objects are automatically rejected.

An decoder, an instance of the HL7Decoder,
accepts as its input an encoded HL7 message
string and constructs a corresponding HL7 message
object. Like the encoder, the decoder also creates a
message definition object first and then uses it
construct a

during its decoding process to

well-formed HL7 message object, checking the
validity of the encoded message string. Therefore,
any invalid input strings are rejected.

The encoder can generate an encoded HL7
message string ejther in a compaclt or verbose
form. Both are valid forms ihat are permitted in

the HL7 standard. In an encoded message string,

102 AR A}H =T AFEY A4 A 8 A A 1 Z(20022)

while all the trailing empty elements are suppressed
in a compact form, all constituent elements appear
in the verbose form regardless of whether they are
ermpty or not. Listing 3 and 4 show the output of
the encoder in verbose form and in compact form,
respectively. The decoder can handle both forms of
encoded HL7 message strings. The encoder and
decoder also provide methods for configuring

variols separators.

MSH ! ~~\& {REGADT " IMCM™~ 1 IFENG"" | 1199601061000 { {ADT~AQ5
1000001 1P 2.3 11
EVN!A05!199601061000" 1199601101400 101 | 1199601061000"
PID;: 11191919~ “GENHOSP&& "~ 1253763~~~ IMASSIE™JAMES ™A™
711195601297 M1 1 1171
ZOBERLEIN™"ISHPEMING"MI"49849~" "~~~ 1(900)485-5344""""
7 1(900)485-5344 70 1181C110199925" 1371-66-92
IR

NK1§1iMASSIE"ELLEN"""""SPQUSE""""" 1171
ZOBERLEIN""ISHPEMING"MI~49849~""" ~~1(900)485-5344777
~"71(900)545-1234 (900)545-1200" "~~~ {EC"EMER

GENCY CONTACT™™"*1iM)

GENCY CONTACT""™""
NK1135
PVL I E
JAMESnnnnmnaaannn 10148"ADNTSON,
JAMES" i eenannnn 10148 ADDISON, JAMES """ ens?t | AMB
1111014 ,JAMESIS™ T 1400 AT
ENHOP | 11
L—

"~ 1(900)545-12347 e (900)545-1

2
S Z
= Iz
g
& —-
é“
=]
=
w
S
=z

-- o
¥
=

il =4
[¥i)
=

I =

Listing 3 A verbose form of an encoded message
string

MSH | ~~\& | REGADT {MCM! IFENG | 199601061000 | ADT~A05 1000001,
Pi2.3
EVN1A0511996010610001199601101400:01 | 1199601061000

PID! 1191919 ""GENHOSP! 253763 IMASSIE JAMES A | 119560129:M
{11171 ZOBERLEIN™"ISHPEMINGML"48849"""1{{(900)485-5344!
(900)485-5344 1 {S1C110199925! 371-66~9256
NK111iMASSIE"ELLEN{SPOUSE 171
ZOBERLEIN™"ISHPEMING"MI "49849""" | (900)485-5344 |
(900)545-1234~(900)545-1200 {EC"EMERGENCY CONTACT

NK1 12 IMASSIE"MARYLOU | MOTHER | 300
ZOBERLEIN™*~TSHPEMING M “49849""" | (900)485-53441
(900)545-1234~(900)545-1200 | EC"EMERGENCY CONTACT

NK113

PV1110{ 11110148 ADDISON, JAMES!0148"ADDISON,
JAMES |0148~ADDISON, JAMES |AMB1 {11111 !0148 ADDISON, JAMES S
TT4001AT TR R ENHOP

Listing 4 A compact form of an encoded message
string

5.3 Creating HL7 Message Objects

In order to use the L7 encoder, an IIL7
message object (Le. an IIL7Message object) must
be created first. An HL7 message object can be
created using the MOM class library that is
comprised of various classes shown in Figure 3.
There are two different ways to create an HL7
message object using the MOM library. Whereas
the first method explicitly makes use of the internal
structure of the message object, the second method
makes use of the high-level API provided by the
MOM library. Thus the second method is more
abstract and easier to usc.

We will describe both methods briefly. In both
methods, we will create an HL7 message object
that maps to the following HL7 message string.

MSH|"\&NTADT~A05/000001P|2.3<CR>

EVNIA05[1996010610001199601101400111 199601061000

<CR>

PIDI191919~ " GENHOSP|[MASSIE " JAMES "A<CR>

NKI1]1IMASSIE"ELLENI|(900)545-12347(300)545~

1200<CR>

NKII2IMASSIE"MARYT.QU|(|(800)545-1234<CR>

PV10ll110148~ADDISON, JAMES<CR>

The above message string is an example of the
ADT-preadmit a patient (event A05). Here, we
will show how the PID and NKI1 segments are
created and added to an HL7 message object. All
the segments except the NEK1 are of the same
nature In that they are all non-repeatable atomic
segments. However, the NKIl segment is a
repeatable segment in ADT A0b message type.

5.3.1 Method 1

In method 1, all the constituent elements of an
HL7 message object are explicitly created using a
factory object and then they are composed one by
one using the low-level APl of appropriate MOM
classes. Listing 5 shows how an HL7 message
object is created.

The first step to build an HL7 message object is
to create a factory object (ie., an Instance of ‘the
HL7Factorv class) that is responsible for allocating
necessary MOM objects shown in Figure 4. At line
10, an empty HIL7 message object (ie. an instance

Ar-Ega gl HLY dl29/Aa =d 9= 44 3 +4 103

1 HL7AtomSegment aseg:

HL7GroupSegment gseg, gingseg:
HL7AtomField afield:

HL7GroupField gfield:

HL7AtomComponent. acomp:
HL7GroupComponent gcomp;

HL7Factory factory = new HL7Factory():

0000 1O O W LI D

10: HL7Message msg = factory. createMessage("ADT", “A05"):

12: aseg = factory. createSegment(“PID"):
13 glield = factory,createGroupField(“Patient (D (Internal 1D)"):

14: afield = factory.createField(“Patient ID (Internal TD)"):

15: acomp = factory,createComponent(”ID"):

16: acomp. setValue("1919197):

17: afield, add{acomp):

18: gcomp = factory, createGroupComponent (“assigning autherity”):
19: acemp = factory, createComponent (“namespace ID”):

20: acomp, setValue("GENHOSP”)

21: geomp. add(aconp):

22: afield, add(gcomp);

23: gfield add(afield):

24: aseg, add(gfield);
25: afield = factory,createField(“Patient Name”):

26: acomp = factory, createComponent(”family name”):

27: acomp, setValue("MASSIE");

28: afield, add(acomp);

29 acomp = factory, createComponent(’given name”):

30: acomp, setValue("JAMES”"):

31 afield, add(acomp):

32: acomp = factory,createComponent(“middle initial or name”):
33 acomp. setValue("A"):

34: afield, add{acomp):

35: aseg. add(afield);
36: msg. add(aseg):

37 ...

38! gseg = factory.createGroupSegment("NK10ptGrp”):

39. gingseg = factory. createGroupSegment():

40: aseg = factory.createSegment(“NK1"):

41: afield = factory.createField("Set 1D - NKL");

42: acomp = factory, createComponent();

43: acomp, setValue{“1"):

44: afield. add(acomp).

45: aseg, add(afield):

46: gfield = factory. createGroupField(“Name”):

47: afield = factory.createField():

48: acomp = factory, createComponent(”family name”):
49: acomp, setValue("MASSIE"):

50: afield. add(acomp):

51: acomp = factory. createComponent (“given name”):
52: acomp, setValue("ELLEN"):

53: afield. add(acomp):

54: glield add(afield):

55: azeg add(gfield).

56: gfield = factory,createGroupField(”"Business Phene Number”):
57: afield = factory.createField():

58: acomp = factory.createComponent(”text”):

59: acomp, setValue(”(900)545-1234"):

60: afield. add(acomp):

61: gfield, add(afield):

62: afield = factory,createField():

63: acomp = factory. createComponent(“text”):

64: acomp, setValue(”(900)545-1200"):

65: afield. add(acomp):

66 gfield. add(afield):

67: aseg, add(gfield):

68. gingseg. add(aseg):

69" gseg, add(gingseg):

70 // Creation of the second NK1 segment is omitted here
71: msg. add(gseg):

72

73 HL7Enceder enceder = new HL7Encoder():

74:

75 String encString = encoder.encode(msg, true): // encode in vervose mode
76.

Listing 5 (Continued)

104 AR A =EA
of the HL7Message class) for a message type of
"ADT” with a triggering event "A05" iz created.
Line 12 through 36 show how an atomic segment,
named “PID", is created and then added to the HL7
message object created at line 10. In our example,
the “PID” segment contains only two mandatory
fields: a repeatable field ("Patient ID (Internal
ID)) and an atomic (eld ("Patient Name"). While
line 13 through 24 show how a repeatable field is
line 25
through 35 show how an atomic field is created

created and then added to a segment,

and then added to a segment.

Since the "Patieni [D (internal ID)" field is
repeatable, it must be contained in an
HL7GroupField object. Therefore, an HL7Group

Field object is [irst created at line 13 and then an
atomic HL7AtomField object is created at line 14.
This HL7AtomField will eventually be added to
the HL7GroupField object at line 23. Line 15
17 how the primitive component
named “ID" is created and then added to the
"Patient ID (Internal ID)" field. Line 18 through

22 show how the composite component "assigning

through show

authority” is created and then added to the "Patient
ID (Internal TD)" field. Unlike a primitive component,
a composite component must first be contained in

AFEY AA A 3@ A 1 E(20022

the HL7GroupComponent and then the HL7Group
Component must be added to its enclosing field.

Line 38 through 71 show how a repeatable segment
is created as a group and then added to the HL7Y
message object created at line 10. As you can see
from Listing 5. any repeatable segments like "NK1”
cannot be direclly contained in an L7 message
object. It must first be contained in an HL7Group
Segment object and the HL7Group Segment object
must be added to an IIL7 message objcct.

Even if the construction procedure for an FIL7
message object using method 1 is intuitive, it is
relatively complex and crror—prone. Therefore we
provide a more convenient mechanism to [acilitate
the creation of an HL7 message object, which is
described next.

5.3.2 Method 2

In method 2, we do not use a factory object to
create the MOM objects composing HI.7 message
They
created, whenever necessary. Listing 6 shows how

objects. are implicitly and automatically
an HL7 object is crealed using this method.

At line 1, an empty HIL.7 message object (i.e. an
of HL7Message the
message type of "ADT" with a triggering event

"A05" is created. Line 3

instance the class) for

through 7 show how the

%: HL7Message msg = new HL7Message(”ADT”, "A05"):

3. msg. setValue("PID:Patient ID (Internal ID):ID", “191919”, 0):

4: msg setValue(”:Patient 1D (Internal ID):assigning authority:namespace [D”, "GENHOSP", 0):
5: meg. setValue(”:Patient Name: family name”, "MASSIE"):

&: msg. setValue(”::given name”, "JAMES”);

g: usg, setValue(”:Patient Name:'middle initial or name”, "A"):

9: HL7GroupSegment group = msg. newGroup(NK1OptGrp”):

10: HL7GroupSegment grp = group, newGroup():

11: grp, setValue("NK1:Set ID - NK1”, "1"):

12: grp. setValue("NK1:Name: family name”, "MASSIE”, 0):

13: grp. setValue("NK1:Name:given nawe”, “ELLEN", 0):

14: grp, setValue("NK1:Business Phone Number:text”, "(900)545-1234", 0):
15: grp.setValue(“NK1:Business Phone Number:text”, “(900)545-1200", 1).
16: grp = group.newGroup{):

17: grp.setValue("NKl:Set ID - NK1", "2"):

18: grp. setValue("MK1:Nape: family name”, “MASSIE”, 0);

19: grp. setValue("NK1:Name: given name”, "MARYLOU", 0);

gOI grp. setValue("NKI: Phone Number: text”, “(900)545-1234", 0):

10

%gi HL7Encoder encoder = new HL7Encader():

34: String encString = ercoder. encode(msg, false): // encode in compact mode
5:

Listing 6

AAREAD A9l HL7 929/029 49939 44 2 748 105

values of fields for the non-repeatable segmenl
"PID" is assigned. Line 9 through 20 show how the
values of fields for the repeatable segment named
"NK1” is assigned. Notice the difference between
the ways in which values are assigned to the
fields. The values of fields for a non-repeatable
segment are assigned using the setValue function
defined in the HL7Message class. On the other
hand, those for a repeatable segment are assigned
using the setValue function defined in the
HL7GroupSegment class.

As shown in Listing 6, the key contributors in
this method are the following overloaded functions.
public void setValue(String comp, String value);
public void setValue(Siring comp, String value,

int index);

The "setValue” sets the value of the specified
field in an HL7 message object. While the first
function must be called to allocate or modily the
value of a non-repeating field of an atomic
segment object, the second function must be called
to allocate or modify the value of each of the
repeated field of an atomic segment object. In these
functions, the first parameter “comp” denotes a
path name designating a target primitive component
object, and the second parameter "value” is a value
to be assigned to the specified primitive component.
In the second function, the third parameter "index”
specifies a sequence number [or the repeated field
objects. The sequence number that starts from
number 0, uniquely identifies those repeated fields
in their enclosing segment. Note that, in any case.
the values of fields can be set even before the
fields (and,
enclosing segments) exist. If you try to set the
but valid field of a
segment, the field (and, if necessary, its enclosing

corresponding if necessary, their

value of a non-existent,

segment) is aulomatically created before the valuc
is assigned.
needs a further

The "comp"” parameter

cxplanation. Since an HL7 message object is
cormprised of hierarchically nested elernents, we can
specify a target component using a sequence of

element names refllecting the nested hierarchy. For

example, at line 3, the path name "PID:Patient ID
(Internal ID):ID” denctes a target component in the
(PID),
(Paticnt ID (Internal ID)), and component name

sequence of segment name field name
(ID). While interpreting the path name, if any of
the constituent elements in the path name appear
for the first time, their corresponding MOM objects
are automatically and implicitly created. At line 4, a
segment name js omitted in the first parameter. In
this case, the most recently used segment name
(e, PID) is implicitly used. Likewise, at line 6, the
palth name “lgiven name” is the same as
"PID:Patient Name:given name”.

5.4 Accessing HL7 Message Objects

Just as there are two different ways to creale an
HL7 message object using the MOM library, there
also exist two different ways for accessing an HL7
message object. The first method explicitly makes
use of the internmal structure of the message object
and relies on the primitive APl provided by the
MOM classes. The second method makes use of
the high-level API provided by the MOM library
such as the overloaded "getValue” functions defined
HL7Message and

classes. Since their usage pattern is similar to the

in the HL7GroupSegment

"setValue", we will not explain it here.

6. Conclusion

In this paper, we proposed a flexible, reusable,
and robust HL7 encoding and decoding framework

using a Message Object Model (MOM) and
Message Definition Repository (MDR). As an
object-oriented model reflecting the logical

relationships among the standard HL7 message
MOM
dependency of the HL7 encoder and decoder on

elements, the completely eliminates the
platform-specific data formats. Therefore, it makes
it possible to build the encoder and decoder as
reusable standalone software components. Moreover,
the MOM also provides a API [or

creating and manipulating the HL7 message objects.

high-level

In addition, the MDR. an external databasc of key
for HL7
encoder and decoder resilient to future modifications

definitions messages, helps make the

106 AR EE = A

of the standard HL7 message formats. It is also
used by the encoder and decoder to perform a
validity check for their respective inputs.

Although we implemented a prototype version of
the encoder and decoder using JAVA, they can be
easily packaged and delivered as standalone
components using the standard component
frameworks like ActiveX, JAVABEAN, or CORBA
comporient.

We strongly believe that the proposed HL7
encoding/decoding framework can be elfectively

used as a critical architectural component to

construct an integrated medical information system.

References

[1] Health Level
www.hl7.org

[2] Amold, K. and Gosling, J, The Java
Programming Language, Sun Microsystems, Inc.,
1996.

Seven Standard version 2.3.1,,

[3] Robert Seliger, SIGOBT Mapping HL7 Messages
to Objects, Version 1.0, Revision B, August 14,
19986.

[4] Cox, B, Object-Oriented Programming: An

Evolutionary Approach, Addison-Wesley, 1986,

[5] Booch, G., Rumbaugh, J., and Jacobson, L, The
Unified Modeling Language User Guide, Addison-
Wesley, 1999.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides,
J., Design Patterns: Llements of Object-Oriented
Software. Addison-Wesley, 1995.

[7] Document Object Model (DOM), a working draft
of the W3C, http://www.w3.org/DOM/

[8] Chang, D., and Harkey, D. Client/Server Data
Access with Java and XML, John Wiley & Son's
Inc., 1998,

[9] Charles, E, and Kahn, Jr., “Self-Documenting
Structured Reports using Open Information
Standards,” Proceedings of 9th World Congress on
Medical Informatics, I0S Press, pp. 403-407, 1998.

[10] Platt, D., The Essence of COM with Activex: A
Programmer’'s Workbook, Prentice Hall, 2000.

[11] Vanhelsuwe, L., Mastering JavaBeans, SYBEX
Ine., 1997,

[12] Siegel, J, CORBA 3 Fundamentals and
Programming, 2nd Edition, John Wiley & Son's
Inc.. 2000.

AFde] 44 A 8 A 13002

W A
1986 MEdiga FFHTERG 29
(8Ah, 1988¥ Iowa Statr University
Hr7] 9 AFH g ZAFEAEAN.
1994 Towa State University #7] 2
. BFE FEF SQF Y. 19949
- ~ 1996 S HAFAATAETRD
AT 19968 ~ ¥A Fguista FFEHTHE =
. A EoF=E Parallel & Distributed Processing,
Distributed Object

Component Based Development,
Computing.

Y -

1931 MEdista Foud A13Es
(2Ab), 19840 AlE&tigte FHde A
oA =S4, 1990 University
of Florida at Gainesville, Electrical
Eng. (84). 1985%] ~ 1990 #=7
AELHAT4 ISDNATFE dF4, 1991
| o~ 20008 P=EUEm o SAAH SR Tw 2000
~ ¥ Fycsta ARNAEER ng gHERE 927
Bal2g, A A Mg sl BAd A5 A)Aa" 4
HAATF A=dd

L U A=

1986 AMeW¥n FAFEH T
(FEAh. 1983 AEiga dge
Fe 3 SG(FEAAb, 19939 A&
qEgw ey AReFEg 29Fet
uhAD. 1991 "= IBM T.] Watson &
T4 AhArd, 19939 ~ A 9=
qEm FEE FAFEHEY JF 24 20008 ~ 20029
University of California, Irvine x4 T4 Hops
olghlo]l&, MAAY He|EhHolx, Holg R welE)
wlol2 4A|, ZE]vde] ool dejvide] Fw A
A HE Y] A2

-

il

%

