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Abstract A new approach of constructing a suffix tree Ts for the given string S is to construct
recursively a suffix tree 7, for odd positions, construet a suffix /tree T, for even positions from T,,
and then merge T, and 7, into Ts. To construct suffix trees for integer alphabets in linear time had
been a major open problem on index data structurcs. Farach used this approach and gave the first
lincar-time algorithm for integer alphabets. The hardest part of Farach’s algorithm is the merging
step. In this paper we present a new and simipler merging algorithm based on a coupled BFS
(breadth—first search). Qur merging algorithm iz more intuitive than Farach’'s coupled DFS
(depth-first search) merging, and thus it can be easily extended to other applications.
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1. Introduction

The suffix tree 75 of a string Sis a
compacted (rie that represents all suffixes of § . It
was designed as a space-efficient alternative[l] to
Weiner's position tree[2]. The suffix tree has been
a fundamental data structure in the area of string
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suffix trees, index data structurcs, integer alphabet, coupled BFS merging

processing algorithms. When the alphabet £ of the
given string S$ is of conmstant size, the suffix tree
can be constructed in Q(=) time[l1,34], where =
is the length of S .

The nature of alphabets affects the construction
time of suffix trees. Other than constant-sized
alphabets, there are two cases' general alphabets and
integer alphabets. For the case of general alphabets
in which the only operations on the input are symbol
comparisons, the suffix tree construction has time
bound of @(nlogn) because the known algorithms(
14] take O(mlogzn) time and there i1s a lower
bound of Q2(#ulogn) by a reduction from sorting.
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In the
dependence on the alphabet size[5], most interesting

question of determining the exact
is the case of integer alphabets, ie., Input symbols
are integers in the range [0, »"] for a constant ¢ .
Since sorting does not provide a super-linear lower
bound for integer alphabets, there has been a gap
between the linear lower bound and the upper bound
of O(nlogn) . Kosaraju and Delcher[6] claimed a
linear-time algorithm for this problem, but it turned
out to be faulty[7]. Farach and Muthukrishnan[8]
proposed a randomized linear-time algorithm.
Recently, Farach[9] gave a deterministic linear-time
algorithm for constructing suffix trees for integer
alphabets, which solves a major open problem on
index data structures [5].

In this paper we present a new and simpler
algorithm for constructing suffix trees for integer
alphabets in linear time. The traditional approach in
constructing suffix trees[1,34] is to scan the given
string S either left-to-right or right-to-left and
construct intermediate trees incrementally until the
suffix tree T is completed. A new approach In
recent parallel and sequential algorithms [89,10,11]
i3 to construct recursively the suffix tree T, for
the set of odd positions, construct the suffix tree

T, for the set of even positions from T,, and

then merge T, and 7, into Ts. The hardest part
of this approach is the merging step and our
contribution is a new merging algorithm based on
a coupled breadth—-first search. A  subproblem
arising in the merging step is the following.

Prefix decision problem: Given two substrings
u and v of string &, decide whether one of = and
v 18 a prefix of the other or not.

Farach and Muthukrishnan[8] gave a randomized
constant-time solution for this problem that uses
fingerprints in [12]. Farach[9] does not solve the
prefix decision problem, and thus the merged tree of
his algorithm is structurally different from Ts.
Hence, his algorithm needs to unmerge some parts
of the merged tree so as to obtain 7. We present

a deterministic constant-time solution for the prefix
decision problem after linear-time preprocessing, and

by using it we can construct a merged tree that is
structurally isomorphic to the suffix tree Tg. Our
solution for the prefix decision problem uses cross
suffix links between the two trees T, and T..

2. Preliminaries

The = integers of the given string S in the
range [0,#n° can be mapped into integers in the
range [1.7z] by linear-time sorting. [lence we
assume that S=1{1.2,..,xn}. The suffix tree Tg is
the compacted trie ol all suffixes of S#, where
S5 and #ey . Fig. 1 shows the suffix tree ol
12221123212311# Since # is not in the

alphabet, all suffixes of § are distinclt and each of

a stnng

them is associated with a leal of Ts. Let S; be
the ; th suffix of the given string S, and S[7] be
the ¢ th symbol of S

Fig. 1 The suffix tree of a string 12221123212311#
The label of an edge (w,v) in Ts is denoted
by label(u,v), which is a nonempty substring of S
and it is represented by the starting and ending
positions of an occurrence of the substring. For a
node # in Ts, let L(%) be the string which is
made by concatenating all the labels of edges on
the path from the root to « The leal node
assoclated with §; is denoted by 7, .

It is well known[1.2] that if there is a node z in
Ts such that L{w=ae lor gq=3 and a=X",
there is a node » such that L(»)=« Each internal
ae has a syffix link sl{w)
pointing to the node » such that L(»)=ga ie,

v is the root of Tg).

node « with L{w) =

sitwy=v (if o is empty,
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These suffix links form a tree, called the si-tree,
rooted at the root of the suffix tree Ts. For an
internal node % [L(2) is the depth of z in the
si-lree by definition of suffix links.

The length of the longest common prefix of two
lep(a, B). The least
is denoted by

strings «, A 1z denoted by
common ancestor of two nodes #,v
lca(e, »). Then the following property is satisfied
between lep and lea: lep (L{w), L(v))=|L( lca (#, v))|
for all nodes w,v in Ts. By the results of [13,14)
the computation of lea of two nodes can be done
in constant time after linear-time preprocessing on

a tree.

3. Construction algorithm

Let the odd tree 7T, be the suffix tree of all
suffixes heginming at odd positions, and the even
tree 7, be the suffix tree of all suffixes beginning
at even positons. The construction algorithm
consists of the following four main steps.

1. Construct the odd tree T, recursively.

2. Construct the even tree T, from T,.

3. Compute cross suffix links between T, and T.,.

4, Merge T, and T, into Ts.

The merging step is the hardest part of the
algorithm and it will be explained in Section 4.

3.1 The odd tree

Construction of the odd tree 7T, is based on
recursion and it takes linear time besides recursion.

1. Encode the given string & into a string of a
make pairs (S[2i—1],S8[24) for
Radix-sort all the pairs in

half size. We
every 1=i<[n/2].
linear time, and map the pairs into integers in the
range (1, 1#/21]. If we
given string into corresponding integers, we get a

convert the pairs in the

new string of length [ #/21, which is denoted by 5.
2. Recursively construct the suffix tree T of 5.
3. Construct 7, from Tg. First, we replace the

indices of all leaves and the lengths of edge labels

in Tg by those of T,. Since two symbols in §
in &, different
symbols in & may have the same first symbol in

are encoded into one symbol

5. This can be done in linear time since it requires
local adjustments in Ty

3.2 The even tree

The even tree 7T, is constructed from T, in linear
time. The following fact is used in this construction:
If we have the lexicographically sorted order of all
the suffixes and the lcp’s of adjacent suffixes in the
sorted order, then we can construct the suffix tree in
linear time and vice versa[34]. Construction of T,
consists of the following two steps.

1. Make a sorted order of the even suffixes. The
of the odd suffixes
can be computed from 7, An even suffix is one

lexicographically sorted order

symbol [ollowed by an odd suffix. We make tuples
for even suffixes: the first element of a tuple is
Si2i)
Initially,
elements. Then we stably sort the tuples by the

and the second element is suffix Spip

the tuples are sorted by the second

first elements.

2. Compute Iep’'s of adjacent even suffixes.
Consider two even suffixes Sy and Sy If 5024 and
5027 mateh, lep of Sy and Sy is Jop (Suzier, Spe)+ 1.
If they do not match, lep( Sy, Sy) is Q. After
lea ( fgiey, fysq) can
time[13,14]. Then
Iep (Spit1s Soprg) can be computed by the property

linear-time preprocessing on 7,
be computed in constant

between lecp and lca mentioned in Section 2.

Fig. 2 Cross suffix links between an odd tree and
an even iree

3.3 Cross suffix links
We will comnpute suffix links from the odd tree
T, to the even tree T, and suffix links from 7.

to T, which will be used to solve the prefix
decision problem later. Such sulfix links can be
defined by the [ollowing lemma. (See Fig.2.)

Lemma 1 Let u, and wu. be nodes (except the
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and T
L(u,) = aa, then there exists a node v, in T, such
that L{vg=a If Llu,)=b then there exists a
in T, such that L(v,)=A

Definition 1 Let u, and u, be nodes in T,
and T, respectively, that I{u,)=aa and
L{u)=b88 The cross suffix link eslu,) of e
points to the node v, in T. such that L(v,)=a
Similarly, csius) points to the node v, in T, such
that L(v,)=A

We now describe how to find the cross suffix
of all T, and

T, and 7T, in linear time to perform

root nodes) in T, respectively. If

node v,

such

links nodes in T. First, we
preprocess
For an

lca operations in constant time[13,14].

internal node u, inT, let 4, be two leaves in
the subtree rooted at u, The cross suffix link
csl(u,) is the internal node w.=lea(li, livy) in
T. Finding csl(x,) of an internal node w. in T,
is similar. The cross suffix link of a leaf [ is
simply 74, The cross suffix links [or all nodes in

7, and 7. can be computed in O(x) time.

4. Merging odd and even frees

In this section we describe how to merge the
odd tree T, and the even tree T, into the [inal
suffix tree Ts in O(n) time. We will construct a
(SM-tree) that Iis
structurally isomorphic to 7Ts , and then compute
Ts from the SM-tree.

4.1 Coupled BFS

The uncompacted trie Twies of

structurally —merged tree

string S is
defined as follows: every edge in Tries is labeled
by a single symbol, and the concatenated string
from the root node to a leaf node in Twieg is a
suffix of $ associated with the leaf node. Suppose
that we merge uncompacted tries 7rie, and T¥ie,
Farach and Muthukrishnan[8,9] merged two tries
by a coupled DFS(depth-first search) of the two
That is, a coupled DFS
roots of both

tries. algorithm first

merges the trees, and then
simultaneously takes edges in both trees and

recursively merges the two subtrees. However, in a

o)& A 29 @ A 2 T2

coupled DFS algorithm it is hard to solve the
prefix decision problem that arises in merging 7T,
and T

To solve the prefix decision problem In constant
time, owr algorithm basically follows a coupled
BFS(breadth-first search) of two tries. Since T,
and T, are compacted tries, our coupled BFS
traverses not by depths of nodes but by string
lengths from the root. To visit all internal nodes u
by ascending order of |L(w)l, we maintain multiple
queues. Let @[k, 1=k<pn be an array of queues.
Each queve Q[# has to-be-merged pairs, which
are defined below, as its elements.

Let u be a merged node of T, and T, let v
and w be children of = such that one of v and
label (1, v) and
Then

(u.v) and {(w, w) are called a to-be-merged pair.

wis in T, the other is in T, and
label (u, w) begin with the same symbol.
A to-be-merged pair () and (w,w) will be
denoted by a tuple <u, v, w>. (See Fig. 3.)

Suppose that two internal nodes #, in T, and .
in 7. are merged into a node = in Ts Let o,
l=i<] be the / th child node of u, and e,
1<j<J be the j th child node of u, where I and
J are the numbers of children of #, and u,
and b,
label Cu., ),

When u is created in 75, we need to find to-be—

respectively. Let a, be the frst symbols

of label( u,,0:). and respectively.
merged pairs among the edges ( u,, 0,)'s and ( %, ¢,)
's, To achieve O(/+J]) time, we perform the
Pair( u,, u,) that finds

to-be-merged pairs and insert the pairs into queues.

following  procedure

Fig. 3 shows an example of Procedure Pair( %,, %.).

Merged Tree -

Even Tree
-

e u ,

<, ¥, W

to=be=merged paic
Ginsamed into Quene)

Mulnple Quene
Fig. 3 An example of Procedure Pair(u,, u.) :

to-be-merged pairs <u,v,w> should be
inserted into the mutiple queue @ .
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Procedure  Puir( u,, u.)

merge #, and z, into x in Ts
7 <1 and ;j <
while { = I and ; = J do

if a,=b; then

b min{|L(o)l, | L(e;)|}

insert <u,0,,e¢;> into QLA
i—itl ,  jej+l
else if  @,<{b, then i—i+l
else j—/j+1 fi
od
end

We now describe our coupled BFS algorithm. The
output of a coupled BFS algorithm is a structurally
(SM —tree).
FPair(r,,»,) where », and », are the root nodes

merged tree Initially, we perform
of T, and T., respectively. At the beginning of
stage 4 of our coupled BFS algorithm, @[4 has
every to-be-merged pair {u, v, w> such that k=
min {|L{2)|, | L(w)| ).

to~be-merged pair {u, v, w>

In stage &, we extract a
from Q&
the following procedure until no elements are lelt in
QLA .

k= |L(»)| £ L{w)). There are two cases depending

and do

Assume without loss of generality that

on  whether or not /label(w,v) is a prefix of
label (u, w). See Fig. 4.

Case 1.

Since {w,v,w> 18 a to-be-merged pair, there
exists a prefix a of label(u,v) and
label (. w) such that 1<|e|<k—IL(w)). We make
node # (called a refinement node) and
(#',v) and
more to~be-merged paitrs in two subtrees rooted at

label (u,v) is not a prefix of label (u, w).

COMMIIorn

a new
new edges (¢, w). Since there are no
v and w, we insert no tuples into queues. Notice
that we do not know the length of label(u, %) nor
the order of label(w',v) and label(u',w) since the

Case 2.

merged node extra hode

v w ¥,

exactly same proper prefix

not a prefix

Fig. 4 Two cases when merging to-be-merged pairs.

prefix decision problem simply retums "No' in this

We will handle these problems later in

Section 4.3.
Case 2.

It label(u, v) = label (w, w) then there can be new

case.

label (2, v) is a prefix of label (u, w).

to-be-merged pairs between children of v and
children of w. Thus we perform Pair (v, w).
Otherwise (Le.,|label (u, v)| < |label (u, w) ), create a
new node ' (called an extra node) between u
such that label/(w, w')=label(x,v) and
label (', w)= label (u, w)— label (u, v). (That is, the
label(u,v) and lobel(w',w) is

label (u, w).) Perform Pair(v,w’) in which there is

and w

concatenation  of

at most one to—be-merged pair.

In Case 1 the merging at the subtrees rooted at
v and w finishes, while in Case 2 the merging
continues, Therefore, without solving the prefix
decision problem (as in [9]) the merging process
cannot produce a merged tree that is structurally
isomorphic to the suffix tree Ts.

4.2 The prefix decision problem

We redefine the prefix decision problem: Given a
to-be-merged pair <{w, v, w>, decide whether one of
label(u,v) and label(u,w) is a prefix of the other
or not. Difficulties in solving this problem are the
following.

¢ We can use lca operations in the odd tree T,
or in the even tree T, but » and w are in diffe-
csl(v) and csl{w)). See Fig. 5.
¢ The final suffix tree T

rent trees (so are
will have a correct

structure between v and w, but we are in the
process of merging and thus we cannot use lca
operations in the merged tree.

The main idea in our solution is to find two

nodes in one of 7T, and 7, through cross suffix

Even Tree

0dd Tree

Fig. 5 A solution for the prefix decision problem.
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links and the merged part in the coupled BFS such
that an lca operation on the two nodes gives an
answer to the prefix decision problem.

Assume without loss of generality that 2=
|L()| < |L(w)| and w is in T, Since » and w
label (u,v) is a
if L(g) is a
solve the prefix decision

are children of merged node w,
prefix of label(u,w) if and only
prefix of L(w). We
problem in constant time as follows. We claim that
L(v) is a prefix of L(w) il and only if ZL(csl(2))
is a prefix of L{esl(w)), which is true if the first
symbols of L(2) and L{(w) are the same. If u is
the root, the first symbols of L(») and L(w) are
the same by definition of to~be-merged pairs (ie.,
label(u, vy and lazbel (u,w) begin with the same
symbol). f « is not the root, the first symbols of
L(v) and IL{w) are the same because L(u) is a
prefix of both L(v) and L(w).

Since [L(esl(w)) | = £—1, csl(v) has been processed
in our coupled BFS. There are two cases depending
on whether esl(2) was merged with a node of T,
See Fig. b.

(1) csl(v) was not merged with a node of 7, :
It means that there exists no node vy in 7, such
that lep ( L(csl(#)), L(») } = &—1. Hence, L(csl(2))
cannot be a prefix of L{csl{w)).

(i1)  csl() was merged with a node x of T, :
extra node, let =

Since the node x may be an

be the nearest descendant of x that is a node in
the original T, (z is unique because an extra
node has only one child). Since we are at stage &
Since both =z

T, we can use an Ica

z is at most a grandchild of x .
and esl(w) are nodes in
operation on z and csl(w) in the orginal T,
L(csl(v)) is a prefix of L(csl(w))
[ (L(lealz, csi(wh) | = &—1.
4.3 From SM-tree to suffix tree
We now construct the suffix tree Ty from the

SM-tree that is

if and only if

structurally isomorphic to Te.
What remains to do is to compute L(f) for every
refinement node ¢ (which has two children), and

then determine the lexicopraphic order of the two
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children. This procedure is the same as that of
Farachl9].

1. Construct the sl-tree of the SM-trec. We first
preprocess the SM —tree, and then compute all the
suffix links using lca operations. This can be done
in O(xn) time.

2. Determine the depths of all internal nodes in
the sl-tree by traversing the sl-tree. Then, we can
get [L{w)| for every internal node x in the SM
depth
definition. Thus, for every refinement node z we
length  of label(w, D, ie,
llabel (u, t)]=1L(z)| —|L{#)|. The lexicographic order
of two children ¢; and ¢; of u refinement node ¢

-tree from the of u in sl-trees by

can determine the

is the order of the first symbols of label(% ¢;) and
label (1, c,).

5 Concluding Remarks

In lhis paper, we have presented a new and

simpler merging algorithm based on a coupled BFS
for constructing suffix trees for integer alphabets.
intuitive  than

Qur merging algorithm is more

Farach’'s coupled DFS merging. Ilence our

algorithm can be easily extended to other

construction algorithms. For example, consider the
case  When we apply this paradigm to a
generalization of the suffix tree to square matrices.
In general, the algorithms for constructing
two-dimensional suffix lrees are very complicated
to design. Iowever, our proposed merging
algorithm could be easily applied to the linear-time
construction algorithm {for lwo-dimensional suffix

trees[15] because of its simplicity.
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