초록
A sort sequence $S_n$ is sequence of all unordered pairs of indices in $I_n$={1,2,…n}. With a sort sequence $S_n$ = ($s_1,S_2,...,S_{\frac{n}{2}}$),one can associate a predictive sorting algorithm A($S_n$). An execution of the a1gorithm performs pairwise comparisons of elements in the input set X in the order defined by the sort sequence $S_n$ except that the comparisons whose outcomes can be inferred from the results of the preceding comparisons are not performed. A sort sequence is said to be extremal if it maximizes a given objective function. First we consider the extremal sort sequences with respect to the objective function $\omega$($S_n$) - the expected number of tractive predictions in $S_n$. We study $\omega$-extremal sort sequences in terms of their prediction vectors. Then we consider the objective function $\Omega$($S_n$) - the minimum number of active predictions in $S_n$ over all input orderings.