DOI QR코드

DOI QR Code

Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 -

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header -

  • 백승세 (전북대학교 대학원 정밀기계공학과) ;
  • 이동환 (전북대학교 대학원 정밀기계공학과) ;
  • 하정수 (한국전력연구원(KEPRI)) ;
  • 유효선 (전북대학교 기계공학부, 자동차 신기술 연구소)
  • Baek, Seung-Se (Dept.of Precision Mechanical Engineering, Graduate School of Chonbuk National University) ;
  • Lee, Dong-Hwan (Dept.of Precision Mechanical Engineering, Graduate School of Chonbuk National University) ;
  • Ha, Jeong-Su ;
  • Yu, Hyo-Seon (Automotive New Technology Research Center, Dept.of Mechanical Engineering, Chonbuk National University)
  • 발행 : 2002.01.01

초록

For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.

키워드

참고문헌

  1. 하정수, 백수곤, 강명수, 1997, '발전설비의 안전진단 및 상태평가기술,' 대한기계학회 논문집, Vol. 37, No. 8, pp. 43-49
  2. 靑木滿, 角屋好邦, 1994, '火力. 原子力およびプラント機器 · 構造部材の經年劣化と壽命豫測,' REALIZE INC., pp. 49-96
  3. Webster, G.A. and Ainsworth, R.A., 1993, 'High Temperature Component Life Assessment,' CHAPMAN & HALL, pp. 1-319
  4. 박종진, 정용근, 김효진, 2000, '발전소 고온부의 수명 평가를 위한 소형 시편용 크리프 시험기의 개발,' 대한기계학회논문집, Vol. 24, No. 10, pp. 2597-2602
  5. JAERI-memo, 62, 192, 1987, '小型ぺンチ試驗法(案), ' 日本原子力硏究所
  6. 백승세, 나성훈, 나의균, 유효선, 2001, 'SP-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발 (I)- 보일러 과열기 튜브 -,' 대한기계학회 논문집, Vol. 25, No. 12, pp. 1995-2001
  7. 유효선, 백승세, 이송인 외 2인, 2000, '소형펀치-크리프 시험기 및 고온부재의 크리프 특성 평가 방법,' 특허출원 24756호
  8. 유효선, 1999, 'Cr-Mo강 시효재의 취화손상 평가를 위한 전기화학적 분극시험에 관한 연구,' 한국비파검사학회, Vol. 9, No. 6, pp. 411-419
  9. 한국과학기술원, 1996, '재료물성 DB용 고 크롬강의 크리프 실험,' 보고서