DOI QR코드

DOI QR Code

Nitrate Removal Rate in Reed Wetland Cells of a Pond-Wetland Stream Water Treatment System

하천수정화 연못-습지 시스템의 갈대 습지셀 초기 질산성질소 제거

  • Yang, Hong-Mo (Dept, of Landscape Architecture, College of Agriculture and Life Science, Chonnam National University)
  • Published : 2002.12.31

Abstract

Nitrate removal rate in three wetland cells was examined. The acreage of each cell was 150 $m^2$. They were a part of a stream water treatment demonstration system which was composed of two ponds and six wetland cells. Earth works far the pond-wetland system were finished from April 2000 to May 2000 and reeds were planted in the three cells in May 2001. Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal area of Korean Peninsula were pumped into a primary pont Effluents from a secondary pond were funneled into the three cells. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 20 $m^3/d$ and 19.3 $m^3/d$, respectively. Hydraulic retention time was 1.5 days. Average influent and effluent nitrate concentration was 2.30 mg/L, 1.75 mg/L, respectively. Nitrate removal rate in the three cells averaged 80.9 $mg/m^2/day$. Seasonal changes of nitrate retention rates were closely related to those of wetland temperatures. Full growth of reeds within a few years can develope litter-soil substrates beneficial to the denitrification of nitrate, which may lead to increases of the nitrate retention rates.

담수호로 유입되는 하천수를 정화하는 연못습지 시스템의 일부를 구성하는 갈대 습지 셀의 초기 $NO_3-N$ 제거율을 분석하였다. 조사기간 유입수와 유출수의 평균 $NO_3-N$ 농도는 각각 2.30 mg/L, 1.75 mg/L 였으며, 평균 $NO_3-N$ 제거율은 80.9 $mg/m^2/day$ 였다. 북미 인공습지의 평균 $NO_3-N$ 제거율 125 mg $N/m^2/day$ 보다는 제거율이 낮다. 본 연구습지가 시공 후 초기단계이고 조사기간에 수온이 낮은 11월과 12월이 포함된 것을 고려하면 $NO_3-N$ 제거율은 양호한 편이다. 본 연구습지의 갈대가 2 $\sim$ 3년 후 습지를 완전히 덮고, 뿌리주변에 근권이 발달하고, 갈대의 잔재물이 습지바닥에 쌓여 탈질화에 필요한 탄소공급원의 역할을 하면 $NO_3-N$ 제거율이 높아질 것으로 사료된다. 월별 $NO_3-N$제거율 변화는 월별 평균 습지 수온의 변화와 유사한 경향을 나타내어 $NO_3-N$ 제거율은 수온에 영향을 받음을 알 수 있다. 습지 셀에 식재한 갈대가 거의 죽지 않고 활착하였으며, 식재 약 3주 후부터 새줄기가 일부 나오기 시작하였다. 유입수가 연못습지 시스템의 연못을 거치는 동안 총질소에 대한 질산태 질소의 함유비율이 높아져 습지의 질소제거에 도움이 되었다. 본 연구 습지의 유입수 질소 농도는 낮은 수준이다 초기 연구결과 간척지 담수호 주변에 오염농도가 낮은 담수호의 물이나 담수호 유입하천수를 정화하는 인공습지의 활용이 가능하다고 사료된다.

Keywords

References

  1. EPA (1999) Manual: Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Cincinnati, Ohio
  2. Kadlec, R and Knight, R. (1996) Treatment Wetlands. CRC Press, Boca Raton, FL. Kessler, E., Jansson, M., eds. 1994. Wetlands and lakes as nitrogen traps, Special Issue of ambio 23, 319-386
  3. Bartlett, M. S., Brown, L. C., Hanes, N. B. and Nickerson, N. H. (1979) Denitrification in freshwater wetland soil, J. Environ. Qual. 8, 460-464 https://doi.org/10.2134/jeq1979.00472425000800040004x
  4. Stengel, E., Carduck, W. and Jebsen, C. (1987) Evidence for denitrification in artificial wetlands. In: Reddy, K. R. and Smith, W. H. Editors, 1987. Aquatic Plants for Water Treatment and Resource Recovery Magnolia Publishing, Orlando, FL, p.543-550
  5. Cooke, J. G. (1994) Nutrient transformations in a natural wetland receiving sewage effluent and the mplications for waste treatment, Water Sci. Technol. 29, 209-217
  6. 양흥모 (1999) 수자원보전을 위한 점원 및 비점원 오염물의 자연생태적 친환경적 처리 인공습지 및 연못-습지 시스템, 한국수자원학회지 32(5), 111-113
  7. 양흥모 (2002) 담수호 수자원보전을 위한 수질정화 연못-습지 시스템의 초기처리수준, 한국환경복원녹화학회지 13, 64-71
  8. 환경부. (2000) 수질오염공정시험방법
  9. Bachand, P. A. M. and Horne, A. J. (2000) Denitrification in constructed free-water surface wetlands. I. Very high nitrate removal rates in a macrocosm study, Ecol. Eng. 14, 9-15
  10. Faulker, S. P. and C. J. Richardson. (1989) Physical and Chemical Caracteristics of Freshwater Wetland Soils in Hammer, D. A. (ed.), Constructed Wetlands for Wastewater Treahnent: Municipal, Industrial and Agricultural, Lewis Publishers, Inc., Chelsea, Michigan. p.41-72
  11. Phipps, R. G. and Crumpton, W. G. (1994) Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads, Ecol. Eng. 3, 399-408 https://doi.org/10.1016/0925-8574(94)00009-3
  12. Broadbent, F. E and Clark, F. E. (1965) Denitrification, Agronomy 10, 344
  13. Zhu, T. and Sikora, F. J. (1994) Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands, In: Proc. 4th Int. Conf. on Wetland Systems for Water Pollution Control Guangzhou, China, p.355-366
  14. Reilly, J. F., Horne, A. J. and Miller, C. D. (2000) Nitrate removal from a drinking water supply with large freesurface constructed wetlands prior to groundwater recharge, Ecol. Eng. 14, 33-47 https://doi.org/10.1016/S0925-8574(99)00018-X
  15. Watson, J. T. and Hobson, J. A. (1988) Hydraulic design considerations and control structures for constructed wetlands for wastewater treatment, In: Hammer, D. A. Editor, 1988, Constructed Wetlands for Wastewater Treatrnent: Municipal, Industrial, and Agricultural Lewis, Chelsea, MI, p.379-392
  16. Mitsch, W. J. and Gosselink, J. G. (1993) Wetlands, 2nd ed. Van Nostrand Reinhold (now J. Wiley & Sons), New York
  17. Brodrick, S. J., Cullen, P. and Maher, W. (1988) Denitrification in a natural wetland receiving secondary treated effluent. Water Res. 22, 431-439 https://doi.org/10.1016/0043-1354(88)90037-1
  18. US Environmental Protection Agency. (1975) Process Design Manual for Nitrogen Control. October 1975
  19. Yang. H. M. (1992) Ecological Design of Estuarine Environment for a Sustainable Urban Ecosystem, PhD Dissertation, University of California Berkeley