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CONVERGENCE THEOREMS OF
THREE-STEP ITERATION METHODS

FOR QUASI-CONTRACTIVE MAPPINGS

Jinbiao Hao, Li Wang, Shin Min Kang and Soo Hak Shim

Abstract We obtain the convergence of three-step iteration meth
ods and generalized three-step iteration methods for quasi-contractive 
and generalized quasi-contractive mappings, respectively, m Banach 
spaces Our results extend the corresponding results in [1], [4]-[6].

1. Introduction and Preliminaries

Conve호gence results for several ite호ation methods of quasi-contra
ctive mappings have been obtained by some researchers (see, for ex
ample, [1], [4]-[6]). Ding [2] introduced generalized quasi-contractive 
mappings. Ciric [1] established first both the existence of fixed points 
and convergence of Picard iterations for quasi-contractive mappings 
in complete metric spaces. Liu [4] obtained convergence-theorem of 
Ishikawa iteration methods for quasi-contractive mappings in Hilbert 
spaces. Zhao [6] studied convergence of Ishikawa iteration methods 
for quasi-contractive mappings and generalized quasi-contractive map
pings m Banach spaces, respectively.

Our aim in this paper is to establish convergence theorems of three- 
step iteration methods and generalized three-step iteration methods
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fo호 quasi-contractive and generalized quasi-contractive mappings, re
spectively, in Banach spaces, which are 난le generalizations of the cor
responding results in [1], [4]-[6].

Throughout this paper, let 5(A) and N denote the diameter of A 
for any A Q X and the set of all positive integers, respectively. Let E 
be a nonempty subset of a Banach space (X, || • ||) and T : E t E be 
a mapping. Recall that T is generalized quasi-contractive on E if there 
exist age (0,1) and a function n : X T N such that

\\Tn^x — ?지*%||

(Ll) < gmax{||z — y\\, \\x - 曾⑴씨|, \\y - Tn^y\\,

||c 一 曾叫川, |加 一7"旧께}

for x^y E X. A mapping T : E E is called quasi-contractive if it 
satisfies

(l 2) WTx - Ty\\ < qmax{||z — y\\, ||x — :T끼\\y - 71이|,

' ||£一別||,|"一&||}

for xyy E X and some q € (0,1).
Clearly, each quasi-contractive mapping is generalized quasi-contr

active. Now we give an example to show that the converse is not true.

Example 1.1. Let X — (—oo, +。。) with the usual metric and E = 
[0,1] U {2}. Define a function n : X —> TV and a mapping T : E T E 
by n(x)=园 + 2 for all x G X and Tx = for x e [0,1), Ti = 2 and 
?2 — I，where [x] means the greatest integer not exceeding x. For any 
q E (0)1), 나lere exist x = 1 and y = 0 such that

\Tx — Ty\ = 2 > 2q = q\y 一 7끼
=gmax{恤 一 y\,出一Tx\. \y — Ty\. |x 一 Ty\, \y 一 Tx\}y

which implies that T is not a quasi-contractive mapping. Now we claim 
that T is gene호alized quasi-contractive with g = §. For any € E 
with z 尹 趴 we consider the following cases:
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Case 1. Let x〉y £ [0,1). Then

\Tn^x - Tn^y\ =

< qmax{|z - y\, jx 一 尸지끼, \y - 7"血세,

恤一^旋饥叽”一丁“⑴찌}.

Case 2. Let x G [0,1) and g = L It follows that

\Tn^x _ Tn^y\ = ||x-||<q|7/- Tn^y\

< qmax{杠;-y\, \x - Tn^x\, \y - Tn^y\,

外 加 一 7寸心)씨}.

Case 3. Let x G [0,1) and y = 2. We have

I侦心)z —= —』y 亦c 一 ”

< qmax{\x - y|, \x 一 曾⑴찌, \y 一 Tn^y\,

\x-Tn^y\,\y-Tn^x\}.

Case 4. Let x ~ 1 and g = 2. Then

\Tn^z-Tn^y\ = ^-^<q\x^y\

< gmax{|z — y\, |rr - Tn^x\, \y 一 Tn^y\,

恤一 (约/|,"一7"心)씨}.

It follows that T is generalized quasi-contractive with q = *

For any given, xq E E and the function n X T N〉the sequence 
(xn}n>0 defined by

Zn = (1 — 如 + Tn^Xn^ Xn^

如=(1 一 bn)xn + bnTnMzn.

^n+l = (1 — Qn)"：n + 지件 2 °〉 

(1.3)
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where (<zn}n>o, (^n}n>o and {cn}n>0 are any sequences in [0,1] is 
called generalized three-step iteration sequence.

For xo E E, the sequence (^n}n>o defined by

乙n = (1 — + CnT*Xn,
(1.4) Vn = (1 — ^n)^n + bnTZn,

^n+1 ~ (1 — ^n)^n + ^n^Vni n N 0,

where {an}n>o, {bn}n>o and {cn}n>0 are any sequences in [0,1] is 
called three-step iteration sequence.

It is easy to see that three-step iteration sequence is a special case of 
generalized three-step iteration sequence by taking n{x)三 1 for x E X.

Particularly, if 环=0 for all n > 0 in (1.4), then the sequence 
{^n}n>o defined by

如6 E)

(1.5) yn = (1 — bn^xn + 6nT*^n,
^n+l = (1 — N 0)

where (an}n>o and (bn}n>o are any sequences in [0,1] is called Ishi
kawa iteration sequence which was introduced by Ishikawa[3].

2 ・ Convergence Theorems

In this section, we establish convergence theorems of three-step iter
ation methods and generalized three-step iteration methods for quasi- 
contractive and generalized quasi-contractive mappings, respectively, 
in Banach spaces.

Theorem 2.1. Let E be a nonempty closed convex subset of a Ba
nach space X and T : E E be a quasi-contractive mapping satisfying 
(1.2) Suppose that (an}n>o, {bn}n>o(미讯 {cn}n>o are any sequences 
m [0,1] satisfying an = oo. Then the three-step iteration se
quence (a;n}n>o defined by (1 4) converges to a unique fixed point of T 
m E.
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Proof. For any integers m, n with 0 < n < let

Dgm = U卷九{叼浦丿)2勺)7以j)7初)TZj }

and dn)m =(5(Dn)m). It is clear that

max{||Txfc - T^||, \\Txk — 7初|, \\Txk - TZl\\, Tzk — TZl\\}

S Q^n,m
ior n < k^l < m. Now we assert that

(2*2) dn,m, = max{H：【；n — T:勺 ||)||z財一 丁级? ||〉|卜以一Tzj|| : n M J J m}.

We consider the following cases:
Case 1. Suppose that 扁冋 — max{||xz 一 7b시| : n < < m}.

Without loss of generality, we assume that dn<m, = |忸房+1 — Txi\\ for 
some I with n<k<m^n<l<m. From (1.4) and (2.1), we have

dnyTn = 11(1 — Q 北)w/c + yk — Txi\\
< (1 - 아;)11% — Txi\\ + ak\\Tyk - Txi\\

W (1 — Qk)dm,m + Qkqdnjn
M dgjm而

which implies that = 0 In this way, we infer that dn^m = \\xn — Txi\\ 
for some I with n <1 <m.

Case 2. Suppose that c/n)m = max(|[rr2 一 Ty31| ' n < t.j < m}. As 
in the proof of Case 1, we conclude that dn^m = \\xn 一 Tyi\\ for some I 
with n < I < m. *

Case 3. Suppose that dn^ = max(||rr? — 7끼| . n < 幻顶 < The 
proof is similar to that of Case 1, so we obtain that dn)m = \\xn — Tzi\\ 
for some I with n < I < m

Case 4. Suppose that dn)7n = max{||你一「히 || : n < fc, Z < m} Then 
there exist some 知 I with n < k^l < m such that = \\yk — Txi\\. 
In view of (1.4) and (2 1), we get that

dn^m = II (1 ~ 眼);1가c + 眼;Tz/q — Txi ||
< (1 - 或)11% - Txi\\ + - 끄如I
M (1 — bQdn,m + bkqdnjn
W dn ,7715 
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which means that 眼 = 0. Then we deduce that = \\xk — Txi\[. 
The rest of the proof is similar to that of Case 1.

Case 5. Suppose that dn)m — max(||?/fc 一 Tyi\\ \ n < k^l < m). As 
in the proof of Case 4, we conclude that dn^m = 房—TyJ| for some 
A;,I with n < k^l < m. The 호est of the proof is analogous to that of 
Case 2, so we omit it.

Case 6. Suppose that dn)m = max{||z/fc 一 ' ti < k^l < m}. The 
proof is similar to that of Case 4, hence (2.2) holds.

Case 7. Suppose that c?n)Tn = max{||zfc — Txi\\ : n < k^l < m}. 
Without loss of generality, we assume that dn)m = \\zk — Txi^ for some 
k，,I with n < kyl < m. In the light of (1.4) and (2.1), we infer that

= II (1 — 야;)：以; 十 이J、— 7七에 I
< (1 - 야:)||% — 7七미I + Ck\\Txk 一 Txi^
V (1 — cQdfm，+ Ckqdnjn

which implies that 公 = 0. Then dn)Tn = \[xk 一”히 ||. The rest of the 
proof is analogous to that of Case 1, thus (2.2) holds.

Case 8. Suppose that dn)Tn = max{羽；—7%|| : n < kJ < m). As m 
the proof of Case 7, we get that dn)m = ||% — Tyi\\ for some 仏 I with 
n < kJ < m. The rest of the proof is similar to that of Case 2, we 
omit it.

Case 9 Suppose that dn)m = max{||w — Tzi\\ : n < kJ < m}. 
Similarly, (2.2) holds.

Case 10. Suppose that (/n)m = max{||，一 叼 || ： n < 如 j V m. 
It is easy to see that there exist I such that n < k < I < m and 
dn)m = II瓦 一 :끼+i|| > \\xk 一 xi\\ From (1.4) and (2.1), we have

dn^m = II (1 — 이)：히 + QiTyi ― 2시I
< (1 - CLi)\\xt 一 Xk\\ + ai\\Tyi 一 xk\\
< dn

which means that ai = 1. Then we conclude that dn)m = ||% — Tyi\\. 
The rest of the proof is analogous to that of Case 2, so (2.2) holds.
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Case 11. Suppose that c?n)m = max{||yfc — : n < I < m}.
Without loss of generality, we assume that dni7n = \\yk — rr/|| for some 
k\l with n < k^l < m. In view of (1.4) and (2.1), we infer 나lat

dn.m = ||(1 一 眼)払 + bkTzk - Xi\\
< (1 -眼)II：公-圳 + bk\\Tzk - xi\\
W二 dn

which yields that dnj7n = \\xk 一 xi\\ or dn>m = \\Tzk 一 由"The rest of 
the proof is similar to that of Case 10 or Case 3, hence (2.2) holds.

Case 12. Suppose that dn^ = max(([^ ~ xi\\ : n < k^l < m}. We 
assume that dn)m = \\zk 一【허|| for some kJ with n < kJ < m. By (1.4) 
and (2.1), we obtain that

dn,m = II (1 — 여c)：以: + C^Tx^ — Xl ||
< (1 - Ell% - 圳 + ck\\Txk - xi\\

which means that dn)m = |恤血 一 xi\\ or dn)Tn = \\Tx^ — x/|j. The rest of 
the proof is analogous to that of Case 10 or Case 1, thus (2 2) holds.

Case 13. Suppose that dn^m = max{||g% 一 如| : n < fc, Z < m}. 
Without loss of generality, we assume that dn)m = \\yk — yi\\ for some 
n < k^l < m. In view of (1 4) and (2.1), we deduce that

= 11(1 一 bQx*，+ b^T•— yi ||
J (1 -眼)||% — yi\\ + bk\\Tz^ — yi\\

which yi이ds that 爲次 = \\^k — yi\\ or dn)m = \\Tzk 一 yi\\. The rest of 
the proof is similar to that of Case 11 or Case 6, so we omit it.

Case 14. Suppose that dn^ = max{||?//c — zi\\ : n < kJ < m}. We 
assume that dn>m = \\y^ 一 zi\\ for some fc,I with n < k^l < m. In the 
light of (1 4) and (2.1), we have

= ll (1 一 bk、)q：k + 眼꼬2僞 — Zi II
W (1 - 妃 11% — 71끼I + bk\\Tzk — 2洲 
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which implies that dn)Tn — ||rt% — 기 || or dn)Tn = \\Tzk — 羽||. The rest of 
the proof is analogous to that of Case 12 or Case 9, hence (2.2) holds.

Case 15 Suppose that = max{||zfc — z(\\ : n < k^l < m}. 
Without loss of generality, we assume that dn)m = \\zk —为|| for some 
ky I with n < k^l < m. By virtue of (1.4) and (2.1), we deduce that

= ||(1 ~ ^k)^k + 야;끄:야$ — Z\ ||
< (1 - ck)\\xk - Zl\\ + 이』호% - Zl\\

hence dnj7n = ||吹; — 기|| or dn)m = \\Txk 一 切 ||. The rest of the proof is 
similar to that of Case 12 or Case 7, thus we omit if?

From Case 1 to Case 15, we obtain that (2.2) holds. Note that
如孔 = max{||x0 - 꼬：이|, ||瓦 一 Ty3\\, ||x0 - Tz3\\ : 0 < ; < m}

< ||^o ~ Txq\\ + max{||Ta；o 一 꼬勺||, \\TxQ 一 Tyg\\,
\\Txq 一 Tzj\\ ： 0 < j < m}

M ||^o ~ 7Z；o|| + go,”
which yields that 

(2-3) d0,m <「丄—||*o - Ta?0|| for m > 0. 
丄一q

It follows from (2.2) and (2 3) that

= max{||祈 -TxgW，\\xn 一 Ty3\\. \\xn — 꼬이| : n W J < 九 + 7가
< (1 — Cln_ J )dn — l^Ti+p + "n—코9涉九一1 j서*

=(1 — (1 — q)Qn-i)dn-im+p
n —1

(2 4) < H(1 〜(1 - g)a“)d。

''丿 j=o
71—1 ]

< —g)卽) 了二II：如 一 n시I
3=o q

< •厂〕一||瓦-Tx0\\ exp 
丄_ q

n—1 
-(1 - q) 52 a3

J=O
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for any p > 0. Letting n —> oo in. (2 4), we have dn^p —> 0. Thus 
(^n}n>o is a Cauchy sequence and hence {xn}n>o converges to some 
u E E. On the other hand, (2 2) and (2.4) ensure that ^xn — Txn\\ —> 0 
as n —> CK). Next we assert that u is the fixed point of T. Otherwise 
Tu 二B u. By (1 2), we have

\\Txn — Z이I < qmax{||a；n - 씨|, \\xn 一 Txn\\, \\u 一 T이|,

\\xn - 7메, ||七 — Ta시|},

letting tz T cq in the above inequality, we infe호 that

血 一 Z에 —T쎄 < |怔 一 7이I，

which is impossible. Hence u = Tu Since T is quasi-contractive, it is 
easy to see that u is the unique fixed point of T in E. This completes 
the proof.

Remark 2 1 It is clear that Theorem 1 of Zhao [6] is a special case 
of Theorem 2.1 by taking cn = 0.

Theorem 2.2. Let E be as in Theorem 2.1, T : E T E be a gen
eralized quasi-contractive mapping satisfying (1.1) and n{x)\n(Tx) for 
x E X Suppose that (tzn}n>o, (bn}n>o and (cn}n>o are (my sequences 
m [0,1] satisfying £辭二()an =oo. Then the generalized three-step it
eration sequence {^n}n>o defined by (1.3) converges to a unique fixed 
point ofT %n E.

Proof. For x G E1, we write Tx = Tn^x, It is easy to show that 
T and {rrn}n>0 satisfy the conditions of Theorem 2.1. It follows from 
Theorem 2.1 that (xn}n>o converges to the unique fixed point u oiT 
m E. Using n(u)\n(Tu)^ we deduce that Tn(^Tu^u = Tn^u = Tu = u, 
which T(Tu) = T지'= Tu So Tu is also a fixed point of T It 
follows from the uniqueness of fixed point of T that Tu = u. Clearly, 
u is the unique fixed point of T This completes the proof

Remark 2.2 Theorem 2 2 generalizes the corresponding results of 
⑴，[4]-[6],
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