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CONVERGENCE THEOREMS OF
THREE-STEP ITERATION METHODS
FOR QUASI-CONTRACTIVE MAPPINGS

JINBIAO HAO, L1 WANG, SHIN MIN KANG AND SO0 HAK SHIM

ABSTRACT We obtain the convergence of three-step iteration meth-
ods and gencralized three-step iteration methods for quast-contractive
and generalized quasi-contractive mappings, respectively, in Banach
spaces Onur results extend the corresponding results in [1], [4]-[6].

1. Introduction and Preliminaries

Convergence results for several iteration methods of quasi-contra-
ctive mappings have been obtained by some researchers (see, for ex-
ample, [1], [4]-[6]). Ding [2] introduced generalized quasi-contractive
mappings. Ciri¢ [1] established first both the existence of fixed points
and convergence of Picard iterations for quasi-contractive mappings
in complete metric spaces. Liu [4] obtained convergence-theorem of
Ishikawa 1teration methods for quasi-contractive mappings in Hilbert
spaces. Zhao [6] studied convergence of Ishikawa iteration methods
for quasi-contractive mappings and generalized quasi-contractive map-
pings 1 Banach spaces, respectively.

Our aim in this paper is to establish convergence theorems of three-
step iteration methods and generalized three-step iteration methods
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for quasi-contractive and generalized quasi-contractive mappings, re-
spectively, in Banach spaces, which are the generalizations of the cor-
responding results in [1}, [4]-[6].

Throughout this paper, let (A) and N denote the diameter of A
for any A C X and the set of all positive integers, respectively. Let E
be a nonempty subset of a Banach space (X,||-{) and T : E — E be
a mapping. Recall that T is generalized quasi-contractiwe on E if there
exist a ¢ € {0,1) and a function n : X — N such that

|1T“(‘"")x _ Tn(y)y“
(1.1) < gmax{|jz — y||, llz - T"®z|, |ly — T" Wy,
llz — Ty, ly — Tz}

for z,y € X. A mapping T : E — E is called gquasi-contractive if it
satisfies

1Tz — Tyl} < gmax{|lz -y, llz - T=ll, ly - Tyll,

(1.2) lz ~ Tyl ly — T=il}

for z,y € X and some ¢ € (0,1).
Clearly, each quasi-contractive mapping is generalized quasi-contr-
active. Now we give an example to show that the converse is not true.

EXAMPLE 1.1. Let X = (—o00, +00) with the usual metric and E =
[0,1] U {2}. Define a function n : X -+ N and a mapping T : E —+ E
by n(z) = [z]+2 for allz € X and Tz = Zx for z € [0,1), T} =2 and
T = %, where [z] means the greatest integer not exceeding z. For any
g € (0, 1), there exist x = 1 and y = 0 such that

Tz — Tyl =2 > 2q = qly — Tz
= gmax{|z — y|, |z — Tz|, ly — Ty, |z — Tyl, |y — Tz},
which implies that T is not a quasi-contractive mapping. Now we claim

that T' is generalized quasi-contractive with g = %. For any z,y € E
with z # y, we consider the following cases:
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Case 1. Let =,y € {0,1). Then
T — T 0y| = o~y
< gmax{jz — y|, |z - T"@al, |y — Ty,
|z — T"Wy|, |y — 7"z}

Case 2. Let z € [0,1) and y = 1. It follows that
1
T (@), = =
e vi=71"3
< gmax{|z — y|, |z — T“(l‘)x], ly — T™Wly),
|z~ T*Wy|, jy — Tz}

x—lléﬂy—T“”m

Case 3. Let z € [0,1) and y = 2. We have

11
lTn(w)m — ’I’n(y)y] R

418
< qma‘x{lx - ylv IIL” - Tn(m)xlr 13/ - Tn(y)yl1
| — TWyl, |y —~ T al}.
Case 4. et z = 1 and y = 2. Then

< qlz — yl

1]1 1
Ty Wy = 2 |2 2| < gle —
| t =Tyl =215 — 5| Sl -yl

< gmax{lz - yl, |z - 7"l |y ~ 7Py,
Ix _ Tn(y)yL Iy _ Tn(x).’lfi}.
It follows that T is generalized quasi-contractive with ¢ = 1.

For any given zn € F and the function n X — N, the sequence

Zp = (l - Cn)xn + CnTn(mn)xn:
(13) Yn = (1 - bn)xn + bnTn(zn)zn:

Zns1 = (1 —ap)z, + anT”(y“)yn, n >0,
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where {an}n>0, {bn}n>0 and {c,}n>0 are any sequences in [0,1] is
called generalized three-step iteration segquence.
For zo € E, the sequence {z,},>0 defined by

(14) Yn = (1 - bn)xn + bnTz?h
Tny1 = {1 —an)zn +a,Ty,, n2>0,

where {6, }n>0, {bn}n>o 2nd {cp}n>o are any sequences in [0,1] is
called three-step iteration sequence.
It is easy to see that three-step iteration sequence is a special case of
generalized three-step iteration sequence by taking n(z) = 1 for z € X.
Particularly, if ¢, = 0 for all n > 0 in (1.4}, then the sequence
{xn}nzo defined by

o€ F,
(15) Yn = (1 - bn)zn + bnTxna
Tn41 = (1 - a'n)mn + anTyn1 n > 0)

where {a,}n>0 and {b,}n>0 are any sequences in [0,1] is called Ishi-
kawa steration sequence which was introduced by Ishikawa(3].

2. Convergence Theorems

In this section, we establish convergence theorems of three-step iter-
ation methods and generalized three-step iteration methods for quasi-
contractive and generalized quasi-contractive mappings, respectively,
in Banach spaces.

THEOREM 2.1. Let E be a nonempty closed convex subset of a Ba-
nach space X and T : E — E be a quasi-contractive mapping satisfying
(1.2) Suppose that {an}n>0, {bn}n>o and {catn>0 are any sequences
wm [0,1] safsfying > oo gan = 00. Then the three-step iteration se-

quence {T, }n>0 defined by (1 4) converges to a umque fized point of T
i E.
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PROOF. TFor any integers m,n with 0 < n < m, let
Dn,'m = U;';:n{xj L] yja zj b ij L] Tyj ) Tz]}
and dnm = 8{Dp m ). It is clear that

max{||Tzy — Tzll, |Tzx — Tyl [|Tzx — Tzll, Tze — T2z}
< qdn,m

for n < k,I < m. Now we assert that

(2.1)

(2.2) dnm = max{{|z,, ~ Ta, |, |zn — Tl lon — Tl i n <3 < m}.
We consider the following cases:

Case 1. Suppose that d,, ,, = max{||z, — Tz, : n < 2,5 < m}.
Without loss of generality, we assume that dn . = ||Zg+1 — T for
some k,l with n < k <m, n <1 <m. From (1.4) and (2.1}, we have

dn,m = ”(1 - a'k)xk + akTyk - TZI:[H
< (1= ap)llze ~ Toll + axl| Tye — Ta|
S (]- - ak)dn,m + akqdn,m
,<_ dn,mv
which implies that ax = 0 In this way, we infer that d,, ;m = ||2n —T@|]
for some ! with n <1 <m.
Case 2. Suppose that dp, ,, = max{||z, — Tyl 'n < 2,73 <m}. As

in the proof of Case 1, we conclude that dp, n, = |22 — Ty|| for some [
with n <1 <m. )

Case 3. Suppose that d,, ,, = max{[jz, — Tz|| . n < 4,5 < m}. The
proof is similar to that of Case 1, so we obtan that dp m = |{{zn — Tz ||
for some l withn <! <m

Case 4. Suppose that d,, = max{|lys—Txi|| : n <k, <m} Then
there exist some k,! with n < k,{ < m such that d,, ., = l|ye — Txi]|.
In view of (1.4) and (2 1}, we get that

dn,m = H(l — bk)a:k -+ kaZk — T.II;”
< (l — bk)”ﬂ:k - Tx;“ + bk“TZk — T.’ﬂz“
< (1 - bk)dn,m + bkqdn,m
S dn,m:
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which means that b; = 0. Then we deduce that dyp m = |lzx — Tz
The rest of the proof is similar to that of Case 1.

Case 5. Suppose that d, ., = max{||lyx — Tull : n < k,{ < m}. As
in the proof of Case 4, we conclude that d,, , = |jzx — Tys|| for some
k,I with n < &,{ < m. The rest of the proof is analogous to that of
Case 2, so we omit if.

Casge 6. Suppose that dp . = max{||jyx — Tal| : n < k,I < m}. The
proof is similar to that of Case 4, hence (2.2) holds.

Case 7. Suppose that dy ., = max{|lzx — Txil| : » < k1 < m}.
Without loss of generality, we assume that dy, m = ||z — Tx¢|| for some
k,l with n < k,1 < m. In the light of (1.4) and (2.1), we infer that

dn,m = [[(1 — ex)zp + exTzy — Tzi|
< (1 —ep)llzr — Tzill + ekl Toe — Tl
< (1= ck)dnm + kqdnm
< dnm,

which imphes that ¢ = 0. Then d, ,, = ||zx — Tz;||. The rest of the
proof is analogous to that of Case 1, thus {2.2) holds.

Case 8. Suppose that dy, ;, = max{zx — Tyill : n < k,I <m}. Asin
the proof of Case 7, we get that dn m = ||zx — Ty|| for some &, with
n < k,I < m. The rest of the proof is similar to that of Case 2, we
omit it.

Case 9 Suppose that dp,,, = max{|zx — Tzj : n < kI < m}.
Similarly, (2.2) holds.

Case 10. Suppose that d, m = max{||z, —z,|| : n < 4,3 < m.
It is easy to see that there exist k,I such that n < k& < I < m and
dnm = 12k — i1l > 12k — ;)] From (1.4) and (2.1), we have

dnm = l|(1 — ap)zy + aiTy — x|
< (1 = ay)llzy — zell + aliTy — zll
S dn,m:

which means that ¢; = 1. Then we conclude that dy m = ||zx — Tl
The rest of the proof is analogous to that of Case 2, so (2.2) holds.
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Case 11. Suppose that d, ,,, = max{||yx — @] : » < k,I < m}.
Without loss of generality, we assume that d, ,, = |[lyx — 2|l for some
kD with n < k,I < m. In view of (1.4) and (2.1), we infer that

drnm = [[(1 = bp)zg + 0Tz — x|
< (1 = bp)llze — zll + k)| Tz — 2|
< dn,m1

which yields that dy, ;n = ||zx — 24| or dysn = |[T2c — x]|. The rest of
the proof is similar to that of Case 10 or Case 3, hence (2.2) holds.

Case 12. Suppose that dp, m = max{|zx — zi|| : n < k, I < m}. We
assume that d,, ,, = [|zx — z¢|| for some k,! with n < k,I < m. By (1.4)
and {2.1), we obtain that

< (1= ci)llzk — mlf + el Tze — z|
< dn,nu

which means that dp, v, = ||z — 21} or dp = ||Tx — 211}, The rest of
the proof is analogous to that of Case 10 or Case 1, thus (2 2) holds.

Case 13. Suppose that dy ., = max{jlye — %l : n < k,1 < m}.
Without loss of generality, we assume that dy, . = [lyx — ¥ for some
n < k, I < m. In view of (1 4) and (2.1), we deduce that

n m = “(l - bk)xk + 0Tz — yi“

< (1= b)lze — vl + k| T2 — wil]
S d 1,070y

which yields that dp, » = {|zx — yil] or dnm = T2 — wif|. The rest of
the proof is similar to that of Case 11 or Case 6, so we omit it.

Case 14. Suppose that d,, ,, = max{flyx — z1|] : n < k,I <m}. We
assume that d,, ,» = llyx — 2| for some k1 with n < k,1 < m. In the
Light of (1 4) and (2.1), we have

dn)m = “(1 — bk)l‘k —+ kaZk — z;]]
S (1 — bk)“l‘k — TZ;” + kaTzk - ZIH
< dn,fnx
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which implies that d, m = {2k — 21|| oF dpm = ||T2k — 2:||. The rest of
the proof is analogous to that of Case 12 or Case 9, hence {2.2) holds.
Case 15 Suppose that d, ,, = max{|jzx — 2] : 7 < k,I < m}.
Without loss of generality, we assume that d, m = ||z — 2| for some
k,l with n < k,I < m. By virtue of (1.4) and (2.1}, we deduce that

dnm = {|(1 — cr)zk + cxTzi — 2|
< (1 —ew)ller — zill + cul Tz — 2|l
< dn,m:
hence d,, ;m = ||zx — 21| or dp,;m = {|[Tzx — 21||. The rest of the proof is

similar to that of Case 12 or Case 7, thus we omit if.
From Case 1 to Case 15, we obtain that (2.2) holds. Note that

dosm = max{zo - T, ], {20 — Tyl 2o — T, | :0 < 5 < m}
< llzo — Txol| + max{||Tzo — Tz, ||, [[Tzo — Ty,
[Tzo — Tzl : 0 <5 <m}
< Alzo — Tzoll + gdo,m.,
which yields that
1
l—g¢
It follows from {2.2) and (2 3) that
dn,n+P
= max{||zn = Tz, 120 — Tyl llzn — Txl :n <3 <+ pj
S —an_1)dn-1,ntp t An-14dn_1,n+p
(1-{(1- Q)an-l)dn—-l,n+p

n

(2.3) dom < llzg — Tzol] for m > 0.

il

|
-

(2.4) < 1-Q- q)a'j)do,n-{-p
1=0
n—1 1
< [[a--qa,) T q“a:o — Tz
2=0

[a—

n—1
< Elixo — Tzoi| exp (* (1-4g) Z ag)
J=0
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for any p > 0. Letting n — oo in (2 4), we have dp nyp — 0. Thus
{Zn}n>o is a Cauchy sequence and hence {z,}n>0 converges to some
v € E. On the other hand, (2 2) and (2.4) ensure that ||z, —Tz,|| — 0
as n — 00, Next we assert that u i1s the fixed point of T. Otherwise
Tu # u. By (1 2), we have

1Tzn — Tul] < gmax{{lz, ~ ull, lzn = Tzall, I - T,
lzn — Tull, {fu - Tzall},

letting 7 — oo in the above inequality, we infer that
[ = Tul] < glju — Tull < {ju—Tul,

which 1s impossible. Hence v = Tu Since T is quasi-contractive, it is

easy to see that u is the unique fixed point of 7 in E. This completes
the proof.

REMARK 2 1 1t is clear that Theorem 1 of Zhao [6] is a special case
of Theorem 2.1 by taking ¢, = 0.

THEOREM 2.2. Let F be as in Theorem 2.1, T : E — E be a gen-
eralized quasi-contractive mapping satisfying (1.1) and n(z)|n(Tz) for
r € X Suppose that {an}n>0, {bntn>o and {cn}n>0 are any sequences
i (0,1} satesfying Y0 an, = oo. Then the generahzed three-step -

eration sequence {Tn}n>o defined by (1.3) converges to a unique fized
pownt of T wn E.

ProOF. For z € F, we write Tz = Tz, It is easy to show that
T and {xn}nzo satisfy the conditions of Theorem 2.1. It follows from
Theorem 2.1 that {x,},>¢ converges to the unique fixed point wof T
in . Using n(u) {n(Tw), we deduce that T™T%)qy = Ty = Tu = u,
which T(Tu) = T*TW(Tu) = Tu So Tu s also a fixed point of T It

follows from the uniqueness of fixed poimnt of T that Tu = u. Clearly,
1 18 the unique fixed point of 77 This completes the proof

REMARK 2.2 Theorem 2 2 generalizes the corresponding results of

(1], [4}-[6).
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