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COMMON FIXED POINT, MULTIMAPS 
IN FUZZY METRIC SPACE

I. Kubiaczyk and Sushil Sharma

Abstract The purpose of this paper is to obtain some common fixed 

point theorems for multivalued mappings m fuzzy metric space Of 

course this is a new result on this line

곤. Introduction and Preliminaries

In 1965, the concept of fuzzy sets was introduced initally by Zadeh 

[10]. Since then many authors have expansively developed the the

ory of fuzzy sets and applications Especially, Deng [24], Erceg [12], 

Kaleva and Seikkala [15], Kramosil and Michalek [5] have introduced 

the concept of fuzzy metric space in different ways.

Recently, many authors have also studied the fixed point theory in 

these fuzzy metric spaces are Badard [16], Chang, Cho, Lee, Jung, and 

Kang [18], Fang [7], Grabiec [11], Hadzic [13], [14], Jung, Cho and 

Kim [8], Jung, Cho, Chang, and Kang [9], Sharma [22], [23], Mishra, 

Sharma, and Singh [21] and for fuzzy mappings are Bose and Sahani [2], 

Butnariu [4], Chang [17] , Chang, Cho, Lee and Lee [19], Heilpern [20]. 

In this note we extend result of Grabiec [11] and others for multivalued 

mappings introduced by Kubiaczyk and Sharma [6].

Now we begin with some definitions:
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Definition 1 [3]. A binary operation * : [0,1] x [0,1] t [0,1] is 

called a continuous t-norm if ([0,1], *) is an abelian topological monoid 

with unit 1 such that a * 6 < c * d whenever a < c and 6 < d for all 

a,b)c,d £ [0,1].

Examples of t-norm are a = ab and a * b = min{a, 6}.

Definition 2 [5]. The 3-tuple (X, M, *) is called a fuzzy metric 

space (shortly, FM-space) if X is an arbitrary set, * is a. continuous 

t-norm and Af is a fuzzy set in X2 x [0, oo) satisfying the following 

conditions: for all 工)y〉z C X and s,i > 0,

(FM-1)肱(％们 0) = 0,

(FM-2) M(x, y、f) = 1, for all t > 0 if and only if x = y,

(FM-3) = M(饥")

(FM-4) ?/, i) * M(t/, z、s) < z, f + s),

(FM-5) •) : [0,1) —> [0,1] is left continuous.

In what follows, *) will denote a fuzzy metric space. Note 

that g, t) can be thought of as the degree of nearness between x 

and y with respect to t. We identify x = g with yy i) = 1 for all 

t > 0 and z/, i) = 0 with oo, and we can find some topological 

properties and examples of fuzzy metric spaces in paper of George and 

Veeramani [1].

In the following example, we know that every metric induces a fuzzy 

metric.

Example 1 [1]. Let (X,d) be a metric space. Define a^b = ab (or 

q * b = mm{a, 6}) and for all x渊 C X and i > 0,

ME) 眼)

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric M 

induced by the metric d the standard fuzzy metric. On the other hand, 

note that there exists no metric on X satisfying (l.a).

Lemma 1 [11]. For all xyy E X, •) is nondecreasing.
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Definition 3 [11]. Let (X, A么 *) be a fuzzy metric space：

(1) A sequence {xn} in X is said to be convergent to a point x W X) 

(denoted by lir%—* 如 =c), if

lim M(xnjx^t) — 1 
n—>oo

for all t > Q.

(2) A sequence {xn} in X is called a Cauchy sequence if

lim Zn, *) = 1
n—>8

for all t > 0 and p > 0.

(3) A fuzzy metric space in. which every Cauchy sequence is conver

gent is said to be complete.

Remark 1. Since * is continuous, it follows from (FM-4) that the 

limit of the sequence in FM-space is uniquely determined.

Let (X, M, *) is a fuzzy metric space with the following condition:

(FM-6) y, i) — 1 for all x^y E X.

Lemma 2 [21]. Let {yn} be a sequence m a fuzzy metric space 

*) with t t > t for all t E [0,1] and the condition (FM-6). 

If there exists a number q G (0,1) such that

肱> M(yn+1.yn,t)

for all t > Q and n = 1,2,... then {?/n} is a Cauchy sequence m X.

Lemma 3 [21] If： for all x^y E X, t > 0 and for a number q E 

(0,1),

M(w,y0) >

then x = y.

Kubiaczyk and Sharma [6] introduced the following concept of mul

tivalued mappings in the sense of Kramosil and Michalek [5].
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We denote by CB(X) the set of all non-empty, bounded and closed 

subsets of X. We have

y,i) = max{M(b^ ?/,t) : b £ B}

Mv(^4, B, t) = mm{minaeA (Afv (a, B, (A, fe, f)))

fo호 all B in X and i > 0.

2. Main Results
Theorem 1. Let (X, M)*) be a complete fuzzy metric space with 

t *t > t for all t € [0,1] and the condition (FM-6). Let F, F? ：X T 

CB(X) satisfying:

(1.1) there exists a number q 6 (0,1) such that

Ms7(F1x,F2y,qt') > mm{M(x, y, i), F±x, F2y, t),

M^(x, F2y, (2 - a)t), M^(y, Frx,«)}

for all x、y £ X and all a € (0,2), t > 0. Then F± and 形 have a 

common fixed point.

PROOF. Let xq is an arbitrary point in X and xi E X is such that 

Xi e FiXq and

M(xo,xi,qt) > Mv(x0,F1x0,qt') 一

x2 e X is such that x2 G F2xi and

M(xi,x2,qt) > M^(xi,F2x1,qt) -
厶

Inductively x2n+i € X is such that rE2n+i G F1x2n and

§
M(X2n； ^2n+l, 2 K)— *

做+2 C x is such that x2n+2 € F2x2n+i and

M(x2n+i,x2n+2,qt) > (x2n+i, F2x2n+i, qt)-顽
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Now we show that {yn} is a Cauchy sequence.

By (1.1) for all i > 0 and a = 1 — k with k G (0,1), we write

€

N Ms7(F1X2n, -F2^2n+1? — 云+1

> mzn{M(T2n,^2n+l^),MV(a；2nJ^1^2n,i),^V(^2n+l)^2^2n+l?i)5

一 £ 
M^(X2n^F2X2n+l. (2 一 a)i), Mv(x2n+1^1^2n, i)} 一 2膈+T

之 TTlin^M^(^2n? ^2n4-li *), (^2n)^2n+l , *), -^^(^2n+l i ^2n+2i '),

$
M(X2n,X2n+2, (1 + A；)t),M(X2n+l,a；2n+13)}一萨声

Now using (FM-4), we write

> min{M(x2n, x2n+i, i), M(x2n, x2n+1, t), M(x2n+i, x2n+2, t),

§
(1-2) M(x2n,x2n+i,t') * M(x2n+i,x2n+2.kt),l} 一 2志「

Since t-norm * is continuous and M(x^ y, •) is left continuous, letting

A: —> 1 m (1 2), we have

(1-3)
£

M(x2n+i,x2n+2,qt') > min{M(x2n, rc2n+i, t),M(X2n+i,x2n+2, ^)}~22n+i-

Similarly we have also

(1-4)
£ 

M(x2n+2, Z&+3, qt) > min{M(x2n+l, X2n+2,t),M(x2n+2, X2n+3, t)}一須帀

Thus from (1.3) and (1.4), it follows that

M(a:n+i,xn+2,Qi) > rmn{M(xn, xn+1, i), M{xn+1, xn+2, t)}-歹京 
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for n = 1,2,... and so, for positive integers n, p,

M(xn+uxn+2,qt) > mm{M(xn,xn+1, t),M(xn+1,xn+2, ^)}--

Thus since M(xn+i, xn+2i *) —> 1 as n T oo, we have

M(xn+1,xn+2,qt') > M(xn,xn+1,t) 一 祈缶.

e is arbitrary making e —> 0, we obtain

肋3中"+2,亦)> M{xn,xn+utY

Therefore by Lemma 2, {xn} converges to a point z E X.

Now by (1.1) with a = 1, we have

Mv(x2n+2,-F1iz,Q«) > M^(F1z,F2x2n+1,qt)

> mzn{M(z, %&+"), Mv(z, Frz, t), Mv(x2n+i, F2x2n+i,t), 

(z, F2x2n+1, t), Afv(X2n+1

> mtn{M(z, x2n+1, F", t), M(X2n+i,x2n+2, t),

M(Z,X2n+2,t),MV(X2n+l,F1Z,t)}.

Letting n —> oo, we obtain

Afv(2；, Fiz^ qt) > mm(l, Mv(z, 玖 1,1, F고z, i)}.

This gives
Mv(z, qt) > Mv(z, i).

Therefore by Lemma 3, z £ Fyz. Similarly we can prove that z G
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