COINCIDENCE POINTS IN

T_{1} TOPOLOGICAL SPACES

Zeqing Liu, Shin Min Kang and Yong Soo Kim

Abstract

In this paper, we prove a few concidence point theorems for two pairs of mappings in T_{1} topological spaces. Our results extend, improve and unify the corresponding results in [1]-[3]

1. Introduction

Machuca [3] established a coincidence point theorem involving a pair of mappings in T_{1} topological spaces. Khan [1] and Liu [2] extended Machuca's result to three mappings. The aim of this paper is to establish some coincidence point theorems for two pairs of mappings in T_{1} topological spaces. Our results are the extension of the results due to Khan [1], Liu [2] and Machuca [3].

Let X and Y be topological spaces. A mapping $f: X \rightarrow Y$ is said to be proper if $f^{-1}(A)$ is compact for each compact subset A of Y with $A \subseteq f(X)$. For any subsct $A \subseteq Y, \bar{A}$, denotes the closure of A. Let $R^{+}=[0, \infty)$ and
$\Phi=\left\{\phi: \phi:\left(R^{+}\right)^{5} \rightarrow R^{+}\right.$is upper semicontinuous and nondecreasing in each coordinate variable and satisfies (1.1) $\}$, where

$$
\begin{equation*}
\bar{\phi}(t)=\max \{\phi(t, t, t, a t, b t): a+b=2, a, b, \in\{0,1,2\}\}<t \tag{1.1}
\end{equation*}
$$

for all $t>0$.
Recerved April 1, 2002.
2000 Mathematics Subject Classification- 54 H 25 .
Key words and phrases T_{1} topological space, complete metric space, coincidence point, proper mapping

Lemma 1.1. [4] Let $\psi: R^{+} \rightarrow R^{+}$be nondecreasing and upper semrcontinuous. Then for each $t>0, \psi(t)<t$ if and only of $\lim _{n \rightarrow \infty} \psi^{n}(t)$ $=0$, where ψ^{n} denotes the composition of ψ with atself n-times.

2. Main Results

Theorem 2.1. Let X be a T_{1} topological space satusfying the first axiom of countability, (Y, d) be a complete metruc space and A, B, S, T : $X \rightarrow Y$ satesfy
(i) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$,
and one of the following conditions:
(ii) A and S are continuous, A is proper with $A(X)$ closed;
(iii) A and S are continuous, S is proper with $S(X)$ closed;
(iv) B and T are contınuous, B is proper with $B(X)$ closed;
(v) B and T are continuous, T is proper with $T(X)$ closed.

If there exusts some $\phi \in \Phi$ such that

$$
\begin{gather*}
d(A x, B y) \leq \phi(d(S x, T y), d(A x, S x), d(B y, T y), \tag{2.1}\\
d(A x, T y), d(B y, S x))
\end{gather*}
$$

for all $x, y \in X$, then there extst $u, v \in X$ such that $A u=S u=B v=$ Tv.

Proof. Given $x_{0} \in X$. From (i) we can easily choose sequences $\left\{x_{n}\right\}_{n \geq 1} \subset X$ and $\left\{y_{n}\right\}_{n \geq 1} \subset Y$ such that

$$
\left\{\begin{array}{l}
y_{2 n+1}=T x_{2 n+1}=A x_{2 n}, \quad n \geq 0, \tag{2.2}\\
y_{2 n}=S x_{2 n}=B x_{2 n-1}, \quad n \geq 1 .
\end{array}\right.
$$

Put $d_{n}=d\left(y_{n}, y_{n+1}\right)$ for all $n \geq 1$. By virtue of (2.1) and (2.2), we infer that for any $n \geq 1$,

$$
\begin{align*}
& d_{2 n+1} \\
& =d\left(A x_{2 n}, B x_{2 n+1}\right) \\
& \leq \phi\left(d\left(S x_{2 n}, T x_{2 n+1}\right), d\left(A x_{2 n}, S x_{2 n}\right), d\left(B x_{2 n+1}, T x_{2 n+1}\right),\right. \\
& \left.\quad d\left(A x_{2 n}, T x_{2 n+1}\right), d\left(B x_{2 n+1}, S x_{2 n}\right)\right) \tag{2.3}\\
& =\phi\left(d_{2 n}, d_{2 n}, d_{2 n+1}, 0, d\left(y_{2 n+2}, y_{2 n}\right)\right) \\
& \leq \phi\left(d_{2 n}, d_{2 n}, d_{2 n+1}, 0, d_{2 n}+d_{2 n+1}\right) .
\end{align*}
$$

Suppose that $d_{2 n+1}>d_{2 n}$. Then (2.3) implies that

$$
d_{2 n+1} \leq \phi\left(d_{2 n+1}, d_{2 n+1}, d_{2 n+1}, 0,2 d_{2 n+1}\right) \leq \bar{\phi}\left(d_{2 n+1}\right)<d_{2 n+1}
$$

which is a contradiction. Therefore, $d_{2 n+1} \leq d_{2 n}$. It follows from (2.3) that

$$
d_{2 n+1} \leq \phi\left(d_{2 n}, d_{2 n}, d_{2 n}, 0,2 d_{2 n}\right) \leq \vec{\phi}\left(d_{2 n}\right)
$$

Similarly, we can also deduce that $d_{2 n} \leq \bar{\phi}\left(d_{2 n-1}\right)$. Consequently, we have

$$
d_{n} \leq \bar{\phi}\left(d_{n-1}\right) \leq \bar{\phi}^{2}\left(d_{n-2}\right) \leq \cdots \leq \bar{\phi}^{n-1}\left(d_{1}\right) \text { for all } n \geq 1
$$

which and Lemma 1.1 mean that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n i}=0 \tag{2.4}
\end{equation*}
$$

In order to show that $\left\{y_{n}\right\}_{n \geq 1}$ is a Cauchy sequence, it is sufficient to show that $\left\{y_{2 n}\right\}_{n \geq 1}$ is a Cauchy sequence. Suppose that $\left\{y_{2 n}\right\}_{n \geq 1}$ is not a Cauchy sequence. Then there exist an $\epsilon>0$ such that for each even integer $2 k$, there exists even integers $2 m(k)$ and $2 n(k)$ with

$$
\begin{equation*}
d\left(y_{2 m(k)}, y_{2 n(k)}\right)>\epsilon, \quad 2 m(k)>2 n(k)>2 k \tag{2.5}
\end{equation*}
$$

For each even integer $2 k$, let $2 m(k)$ be the least even integer exceeding $2 n(k)$ satisfying (2.5), that is,

$$
\begin{equation*}
d\left(y_{2 n(k)}, y_{2 m(k)-2}\right) \leq \epsilon \quad \text { and } \quad d\left(y_{2 n(k)}, y_{2 m(k)}\right)>\epsilon \tag{2.6}
\end{equation*}
$$

Note that
(2.7) $\epsilon<d\left(y_{2 n(k)}, y_{2 m(k)}\right) \leq d\left(y_{2 n(k)}, y_{2 m(k)-2}\right)+d_{2 m(k)-2}+d_{2 m(k)-1}$.

Using (2.4), (2.6) and (2.7), we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(y_{2 n(k)}, y_{2 m(k)}\right)=\epsilon \tag{2.8}
\end{equation*}
$$

It is easy to verify that

$$
\begin{align*}
\left|d\left(y_{2 n(k)}, y_{2 m(k)-1}\right)-d\left(y_{2 n(k)}, y_{2 m(k)}\right)\right| & \leq d_{2 m(k)-1} \\
\left|d\left(y_{2 n(k)+1}, y_{2 m(k)-1}\right)-d\left(y_{2 n(k)}, y_{2 m(k)-1}\right)\right| & \leq d_{2 n(k)} \tag{2.9}
\end{align*}
$$

According to (2.4), (2.8) and (2.9), we know that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(y_{2 n(k)}, y_{2 m(k)-1}\right)=\lim _{k \rightarrow \infty} d\left(y_{2 n(k)+1}, y_{2 m(k)-1}\right)=\epsilon \tag{2.10}
\end{equation*}
$$

In view of (2.1), we have

$$
\begin{aligned}
d(& \left.y_{2 n(k)}, y_{2 m(k)}\right) \\
\leq & d_{2 n(k)}+d\left(A x_{2 n(k)}, B x_{2 m(k)-1}\right) \\
\leq & d_{2 n(k)}+\phi\left(d\left(S x_{2 n(k)}, T x_{2 m(k)-1}\right), d\left(A x_{2 n(k)}, S x_{2 n(k)}\right)\right. \\
& d\left(B x_{2 m(k)-1}, T x_{2 m(k)-1}\right), d\left(A x_{2 n(k)}, T x_{2 m(k)-1}\right) \\
& \left.d\left(B x_{2 m(k)-1}, S x_{2 n(k)}\right)\right) \\
= & d_{2 n(k)}+\phi\left(d\left(y_{2 n(k)}, y_{2 m(k)-1}\right), d_{2 n(k)}, d_{2 m(k)-1}\right. \\
& \left.d\left(y_{2 n(k)+1}, y_{2 m(k)-1}\right), d\left(y_{2 m(k)}, y_{2 n(k)}\right)\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above inequalities, by (2.4), (2.8) and (2.10) we obtain that

$$
\epsilon \leq \phi(\epsilon, 0,0, \epsilon, \epsilon) \leq \bar{\phi}(\epsilon)<\epsilon
$$

which is impossible. Hence $\left\{y_{n}\right\}_{n \geq 1}$ is a Cauchy sequence. Since (Y, d) is complete, there exists some $z \in Y$ with $\lim _{n \rightarrow \infty} y_{n}=z$.

Assume that (ii) holds. Set $C=\left\{A x_{2 n}: n \geq 1\right\} \cup\{z\}$. Then $C=\bar{C} \subseteq \overline{A(X)}=A(X) \subseteq Y$ and C is compact. It follows that $A^{-1}(C)$ also compact because A is proper. Consequently, there exists a subsequence $\left\{x_{2 n(k)}\right\}_{k \geq 1}$ of $\left\{x_{2 n}\right\}_{n \geq 1}$ such that it converges to some point $u \in X$. The continuity of A and S ensures that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A x_{2 n(k)}=A u=z=\lim _{k \rightarrow \infty} S x_{2 n(k)}=S u \tag{2.11}
\end{equation*}
$$

Since $A u \in A(X) \subseteq T(X)$, there exists some $v \in X$ such that $A u=T v$. Now we claim that $A u=B v$. Otherwise $A u \neq B v$. From (2.1) and
(2.11) we get that

$$
\begin{aligned}
d(A u, B v) \leq & \phi(d(S u, T v), d(A u, S u), d(B v, T v) \\
& d(A u, T v), d(B v, S u)) \\
= & \phi(0,0, d(A u, B v), 0, d(A u, B v)) \\
\leq & \bar{\phi}(d(A u, B v)) \\
< & d(A u, B v)
\end{aligned}
$$

which is a contradiction. Hence $A u=B v$. Thus, $A u=S u=B v=T v$.
Assume that (iii) holds. Set $C=\left\{S x_{2 n}: n \geq 1\right\} \cup\{z\}$. It is easy to see that $S^{-1}(C)$ also compact because C is compact and S is proper. Consequently, there exists a subsequence $\left\{x_{2 n(k)}\right\}_{k \geq 1}$ of $\left\{x_{2 n}\right\}_{n \geq 1}$ such that it converges to some point $u \in X$. The continuity of A and S ensures that (2.11) holds. Similarly, we can prove that there exists some $v \in X$ with $A u=S u=B v=T v$

Assume that (iv) holds. Put $C=\left\{B x_{2 n-1}: n \geq 1\right\} \cup\{z\}$. Then $B^{-1}(C)$ is compact since C is compact and B is proper. Clearly, there exists a subsequence $\left\{x_{2 n(k)-1}\right\}_{k \geq 1}$ of $\left\{x_{2 n-1}\right\}_{n \geq 1}$ such that it converges to some point $v \in X$. It follows from the continuity of B and T that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} B x_{2 n(k)-1}=B v=z=\lim _{k \rightarrow \infty} T x_{2 n(k)-1}=T v \tag{2.12}
\end{equation*}
$$

Notice that $B v \in B(X) \subseteq S(X)$. Of course, there exists some $u \in X$ such that $B v=S u$. Suppose that $A u \neq B v$. According to (2.1) and (2.12), we deduce that

$$
\begin{aligned}
& d(A u, B v) \leq \phi(d(S u, T v), d(A u, S u), d(B v, T v) \\
&d(A u, T v), d(B v, S u)) \\
&= \phi(0, d(A u, B v), 0, d(A u, B v), 0) \\
& \leq \bar{\phi}(d(A u, B v)) \\
&< d(A u, B v)
\end{aligned}
$$

which is impossible. Therefore $A u=B v$. Thus, $A u=S u=B v=T v$.

Assume that (v) holds. Put $C=\left\{T x_{2 n-1}: n \geq 1\right\} \cup\{z\}$. Then $T^{-1}(C)$ is compact since C is compact and T is proper. Clearly, there exists a subsequence $\left\{x_{2 n(k)-1}\right\}_{k \geq 1}$ of $\left\{x_{2 n-1}\right\}_{n \geq 1}$ such that it converges to some point $v \in X$. It follows from the continuity of B and T that (2.12) holds. Similarly, we have $A u=S u=B v=T v$ for some $u \in X$. This completes the proof.

Theorem 2.2. Let X be a T_{1} topological space satisfying the first axiom of countabality, (Y, d) be a complete metric space and A, B, S : $X \rightarrow Y$ satisfy
(i) $A(X) \cup B(X) \subseteq S(X)$,
and one of the following condrtions:
(ii) A and S are continuous, A is proper with $A(X)$ closed;
(iii) A and S are continuous, S is proper with $S(X)$ closed;
(iv) B and S are contenuous, B is proper wuth $B(X)$ closed;
(v) B and S are continuous, S is proper with $S(X)$ closed.

If there extsts some $\phi \in \Phi$ such that

$$
\begin{gather*}
d(A x, B y) \leq \phi(d(S x, S y), d(A x, S x), d(B y, S y), \\
d(A x, S y), d(B y, S x)) \tag{2.13}
\end{gather*}
$$

for all $x, y \in X$, then there exist $u \in X$ such that $A u=B u=S u$.
Proof. Let x_{0} be an arbitrary element in X. Then (i) ensures that there exist sequences $\left\{x_{n}\right\}_{n \geq 1},\left\{y_{n}\right\}_{n \geq 1}$ in X such that

$$
\left\{\begin{array}{l}
y_{2 n+1}=S x_{2 n+1}=A x_{2 n}, \quad n \geq 0 \\
y_{2 n}=S x_{2 n}=B x_{2 n-1}, \quad n \geq 1
\end{array}\right.
$$

As in the proof of Theorem 2.1, we conclude that $\left\{y_{n}\right\}_{n \geq 1}$ converges to some $z \in Y$.

Assume that (ii) holds. Set $C=\left\{A x_{2 n}: n \geq 1\right\} \cup\{z\}$. Then $C=\bar{C} \subseteq \overline{A(X)}=A(X) \subseteq Y$ and C is compact. It follows that $A^{-1}(C)$ also compact because A is proper. Consequently, there exists a subsequence $\left\{x_{2 n(k)}\right\}_{k \geq 1}$ of $\left\{x_{2 n}\right\}_{n \geq 1}$ such that it converges to some
point $u \in X$. The continuity of A and S ensures that (2.11) holds. Now we claim that $A u=B u$. Otherwise $A u \neq B u$. From (2.11), (2.13) we get that

$$
\begin{aligned}
d(A u, B u) \leq & \phi(d(S u, S u), d(A u, S u), d(B u, S u) \\
& d(A u, S u), d(B u, S u)) \\
= & \phi(0,0, d(A u, B u), 0, d(A u, B u)) \\
\leq & \bar{\phi}(d(A u, B u)) \\
< & d(A u, B u)
\end{aligned}
$$

which is a contradiction. Hence $A u=B u$. Thus, $A u=B u=S u$. Similarly, we can complete the proof if one of (iii)-(v) holds.

Remark 2.1. Theorem 2.2 extends Theorems 1 and 2 in [2] and the results in [1] and [3].

In case $\phi(x, y, z, u, v)=r \max \left\{x, y, z, \frac{1}{2}(u+v)\right\}$ for an $(x, y, z, u, v) \in$ $\left(R^{+}\right)^{5}$, where r is a constant in $(0,1)$, then Theorems 2.1 and 2.2 yield the following:

Corollary 2.1. Let X be a T_{1} topological space satisfying the first axiom of countabiluty, (Y, d) be a complete metric space and A, B, S, T : $X \rightarrow Y$ satesfy (i) and one of (ii)-(v) in Theorem 2.1. Suppose that

$$
\begin{align*}
d(A x, B y) \leq & r \max \{d(S x, T y), d(A x, S x), d(B y, T y) \\
& \left.\frac{1}{2}(d(A x, T y)+d(B y, S x))\right\} \tag{2.14}
\end{align*}
$$

for all $x, y \in X$, where r is a constant in $(0,1)$. Then there exist $u, v \in X$ such that $A u=S u=B v=T v$.

Corollary 2.2. Let X be a T_{1} topologncal space satisfying the first axıom of countability, (Y, d) be a complete metric space and A, B, S : $X \rightarrow Y$ satzsfy (i) and one of (ii)-(v) in Theorem 2.2. Suppose that

$$
\begin{align*}
d(A x, B y) \leq & r \max \{d(S x, S y), d(A x, S x), d(B y, S y) \\
& \left.\frac{1}{2}(d(A x, S y)+d(B y, S x))\right\} \tag{2.15}
\end{align*}
$$

for all $x, y \in X$, where r is a constant in $(0,1)$. Then there exists $u \in X$ such that $A u=B u=S u$.

Remark 2.2. The results in [1] and [3] are special cases of Corollary 2.1.

References

[1] M.S. Khan, A note on a nonlinear functional equation, Rend Sem. Fac. Sci. Univ. Cagliari 49 (1979), 87-89.
[2] Z. Liu, On cotncidence point theorems in topocogical spaces, Bull Cal. Math. Soc. 85 (1993), 531-534
[3] R Machuca, A conncıdence theorem, Amer. Math. Monthly 74 (1967), 569.
[4] J Matkowskı, Fuxed point theorems for mappings with a contractive sterate at a point, Proc. Amer Math Soc. 62 (1977), 344-348.

Zeqing Liu
Department of Mathematics
Liaoning Normal University
P. O. Box 200, Dalian

Liaoning 116029, People's Republic of China
E-mall: zeqingliu@sina.com.cn
Shin Min Kang and Yong Soo Kim
Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
E-mail: smkang@nongae.gsnu.ac.kr

