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Transforming growth factor beta (TGF-β) is a member of a
large family of multifunctional secreted polypeptides that are
potent regulators of cell growth, differentiation, and matrix
production (Massague, 1998; Dijke et al., 2000; Derynck et
al., 2001).

TGF-β was initially identified and named on the basis of its
ability to stimulate fibroblast growth in soft agar, but it is now
the best-studied growth inhibitory protein. Its molecular
components at each step in the TGF-β signaling pathway have
been identified as tumor suppressors (Massague, 1998). Over
the last two decades, the TGF-β family has emerged as a
major source of signals that control cell growth and
differentiation (Massague et al., 2000). Members of the TGF-
β family produce different effects, depending on the type and
state of the cell. The signals of TGF-β family members are
transduced across the plasma membrane by the heteromeric
interaction of two receptors, types I and II, which are serine/
threonine kinases. The initiation of the signaling requires
binding of TGF-β to the TGF-β type II receptor, a
constitutively active serine/threonine kinase, which
subsequently transphosphorylates the TGF-β type I receptor.
The activated type I receptor initiates intracellular signaling
through the activation of specific Smad proteins. Smads relay
signals into the nucleus where they, together with other
proteins, direct transcriptional responses (Massague, 2000).

In this review, we will focus on how TGF-β mediates cell
growth arrest and apoptosis.

The Smad proteins are major TGF-β signal 
mediators 

The Smad proteins are a family of transcription factors found
in nematodes, insects, and vertebrates (Heldin et al., 1997).
They constitute the only well-known TGF-β signaling
effectors (Derynck et al., 1998; Piek et al., 1999; Itoh et al.,

2000; Massague, 2000; Massague and Wotton, 2000;
Miyazano et al., 2000). Smad-related genes were first
discovered through genetic screens in Drosophila and
Caenorhabditis elegans. The name Smad is derived from the
Sma and MAD gene homologues in C. elegans and
Drosophila (Derynck et al., 1996). To date, 10 Smad proteins
have been identified, and can be classified into three groups
(Massague, 1998). Receptor-regulated Smads (R-Smads) are
phosphorylated by an activated type I receptor kinase on two
serine residues in a SSXS motif at their extreme C-termini,
after which they form heteromeric complexes with common
partner Smads (Co-Smads) (Hoodless et al., 1996; Lagna et
al., 1996; Macias-Silva et al., 1996; Souchelnyskyi et al.,
1996; Zhang et al., 1996; Kretzschmar et al., 1997). The
TGF-βs, activins, and nodals bind to receptors that
phosphorylate Smad2 and Smad3. The BMPs and related
GDFs, as well as AMH/MIS, engage receptors that signal
through Smads 1, 5, and 8. One mammalian Co-Smad,
Smad4, is known, and two distinct Co-Smads (Smad4a and
Smad4b) have been identified in Xenopus (Howell et al.,
1999; Masuyama et al., 1999). The inhibitory Smads (I-
Smads: Smad6 and Smad7) act in opposition to R- and Co-
Smads, forming stable associations with activated type I
receptors, and preventing the phosphorylation of R-Smads.
Smad7 is induced by TGF-β signaling, and provides a TGF-
β-induced negative feedback loop (Hayashi et al., 1997;
Nakao et al., 1997). In contrast, Smad6 is not induced, but is
translocated from the nucleus to the cytoplasm by TGF-β
signaling and functions as a negative regulator (Inamura et al.,
1997; Hata et al., 1998).

Although the Smad protein family does not share homology
with other known proteins, each member of the family contains
highly conserved N- and C-terminal domains that are separated
by a proline-rich linker of variable length and sequence. The N-
terminal domain has been called the Mad-homology domain 1
(MH1), and the C-terminal domain has been designated the
Mad-homology domain 2 (MH2). The MH2 domain is
important for homo- and heteromeric complex formation, and
for transcriptional activation and repression. The MH1 domain
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has intrinsic DNA-binding activities, and also associates with
other transcription factors (Shi et al., 1997; Shi et al., 1998;
Dennler et al., 1999). I-Smads have conserved MH2 domains
that are sufficient for type I receptor interaction and inhibitory
activity. The N-termini of I-Smads might be responsible for
their signaling specificity.

TGF-β-mediated cell growth arrest

TGF-β is a potent inhibitor of growth in most epithelial cells,
including many carcinomas in culture, endothelial cells,
hepatocytes, lymphocytes, and myeloid cells (Coffey et al.,
1988; Laiho et al., 1990; Moses et al., 1990; Newman, 1990;
Massague et al., 1992; Ewen, 1994). Conversely, TGF-β is
generally mitogenic in mesenchymally-derived cells (Battegay
et al., 1990). TGF-β-mediated growth arrest occurs by blocking
all cycle transits at mid- and late-G1 phase of the cell cycle; the
mechanism of this arrest is cell-type specific. In most cases, this
arrest is reversible, but in some cases it is associated with
terminal differentiation or programmed cell death.

Two classes of anti-proliferation gene responses are involved
in TGF-β-mediated growth arrest: inactivation of cyclin-
dependent kinases (cdks) and down regulation of c-myc.

Inactivation of cyclin-dependent kinase

Cell cycle transitions are governed by a family of cdks, whose
activity is up-regulated by association with positive regulators,
the cyclins, and down-regulated by association with negative
regulators, the cdk inhibitors. Passage through G1 into the S
phase is regulated by the activities of cyclin D-, E-, and A-
cdks (Sherr, 1993, 1996; Weinberg, 1995).

In the mammalian cell cycle, promotion of the transition
from G1 to the S phase (initiation of DNA synthesis) by
mitogens is cooperatively regulated by cyclin D-cdk4, cyclin
D-cdk6, cyclin E-cdk2, and cyclin A-cdk2. Cdk activity is
tightly regulated by diverse mechanisms, including changes in
the levels of cyclin, cdk2 phosphorylation of positive and
negative regulatory sites, and interaction with stoichiometric
inhibitors. Cdk inhibitors (CKIs) that govern these events have
been assigned to one of two families, based on their structures
and cdk targets (Sherr and Roberts, 1995, 1999). The first
class, which specifically inhibits the catalytic subunits of cdk4
and cdk6, includes the INK4 proteins (inhibitors of cdk4,
including p16INK4A, p15INK4B, p18INK4C, and p19INK4D) (Serrano et
al., 1993; Guan et al., 1994; Hannon and Beach, 1994; Hirai
et al., 1995; Chan et al., 1995). The other class includes the
Cip/Kip family, whose members act more broadly. All
members of the Cip/Kip family, including p21Cip1/WAF1, p27Kip1,
and p57Kip2, contain conserved sub-domains within their
amino terminus that enable them to bind to cyclins and cdks
(El-Deiry et al., 1993; Gu et al., 1993; Harper et al., 1993;
Dulic et al., 1994; Noda et al., 1994; Polyak et al., 1994a,
1994b; Toyoshima and Hunter, 1994; Lee et al., 1995;
Matsuoka et al., 1995).

Progression through the cell cycle involves the
phosphorylation of the retinoblastoma tumor suppressor gene
product pRB (Weinberg, 1995). The generally accepted view
is that cyclin D-dependent kinases initiate the pRB
phosphorylation in the mid-G1 phase, after which cyclin E-
cdk2 becomes active and completes the phosphorylation of
pRB on additional sites (Ewen et al., 1994; Matsushime et al.,
1994; Meyerson and Harlow, 1994; Kitagawa et al., 1996).
Cyclin A- and B-dependent cdks that are activated later in the
cell cycle, maintain pRB in a hyperphosphorylated state in the
next G1 phase (Ludlow et al., 1990, 1993). The pRB
hyperphosphorylation in late G1 disrupts its association with
various E2F family members. This allows the coordinated
transcription of a bank of genes whose activities are necessary
for DNA synthesis (Dyson, 1998; Nevins, 1998).

TGF-β specifically induces an increase in a subset of cdk
inhibitors, including p15, p21, and p27 (Fig. 1A). TGF-β
causes the up-regulation of p15INK4B mRNA, and increased
binding of the gene product to cdk4 and cdk6 in epithelial
cells (Hannon and Beach, 1994; Reynisdottir et al., 1995).
This results in the release of p21cip/p27kip from cdk4/cdk6,
and facilitates the association of p21Cip/p27Kip1 with cyclin E-
cdk2 complexes (Reynisdottir and Massague, 1997).
Induction of the p15INK4B expression in response to TGF-β is
brought about by Smad-mediated transcriptional activation.
TGF-β-activated Smad2 or Smad3 forms a complex with
Smad4 and induce transcription by interacting with Sp1 at the
p15INK4B promoter (Sandhu et al., 1997; Feng et al., 2000). p21
is known to be a transcriptional target of p53, and plays a role
in senescence and differentiation, apoptosis, and the
coordination of DNA damage repair with cell-cycle arrest.
TGF-β also induces p21Cip1 though a p53-independent
mechanism (Datta et al., 1995). Like p15INK4B, TGF-β induces
p21Cip1 through Smad-mediated transcription. Smads mediate
the enhancement of Sp1 affinity for the p21 promoter,
independent of a direct association between Smads and DNA;
Smad2, Smad3, and Smad4 physically interact with Sp1
through their MH1 domain (Pardali et al., 2000). p27Kip1 was
identified as having inhibitory activity in cells that are arrested
by TGF-β (Polyak et al., 1994). The p27Kip1 activity is
increased in TGF-β-arrested cells and in contact-inhibited
cells. In cells progressing from G0 to the S phase, this
inhibitory activity is highest in G0, and decreases as cells enter
the G1-to-S phase transition. Most of the p27 protein in a
proliferating cell is found in association with cyclin D-cdk4/6
(Sherr, 1996). p27 is associated with cdk4/6 in proliferating
cells until TGF-β induces p15. p27 is released by p15 from
cyclin D-cdk4/6 and shuttled to cyclin E-cdk2, inhibiting this
kinase (Fig. 1B). Binding of p27 can occlude a cdk2 complex
from phosphorylation by the cdk-activating kinase (CAK).
This may explain why TGF-β-treated cells lack cdk2
phosphorylation. TGF-β appears to inhibit cell growth by
causing the association of p27 with cyclin/cdk2 to block its
kinase activity, and arrest cells in G1. However, it also has
been shown in certain studies that p27 is not essential for the
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TGF-β-induced growth inhibition. TGF-β is still able to
induce growth arrest in cells that are derived from mice with a
homozygous deletion of p27; p15-/- or p27-/- mouse embryo
fibroblasts also remain at least partly growth-inhibited by
TGF-β (Nakayama et al., 1996; Latres et al., 2000), perhaps
due to the presence of p21. Thus, TGF-β acts to arrest cell
growth through multiple and probably compensatory
mechanisms that are also cell type-dependent.

In addition, TGF-β prevents increases in cdk4 levels and
down-regulates cdc25A. TGF-β induces suppression of cdk4
synthesis in a p53-dependent manner during G1 in mink lung
epithelial cells (Ewen et al., 1993) under the particular
conditions of mitogen-deprived cell cultures that are
replenished with serum. Regulation of cdk4 synthesis by both
p53 and TGF-β is mediated by the 5-untranslated region
(UTR) of the cdk4 mRNA (Ewen et al, 1995; Miller et al.,
2000). Cdc25A is a tyrosine phosphatase that removes
inhibitory tyrosine phosphorylation from cdks. In
keratinocytes and human mammary epithelial cells, TGF-β
down-regulates cdc25A, which increases the level of tyrosine
phosphorylation of cdk4/6 and ckd2, leading to the
inactivation of these kinases (Iavarone and Massague, 1997,
1999).

TGF-β inhibits the expression of c-myc (Alexandrow and
Moses, 1995). Cell growth, proliferation, and apoptosis is
promoted by c-myc. Also, c-myc inhibits terminal
differentiation; and when deregulated, is profoundly involved
in the genesis of an extraordinarily wide range of cancers
(Grandori and Eisenman, 1997; Facchini and Penn, 1998;
Eisenman, 2001). The N-terminal fragment of Myc stimulates
transcription when fused to a heterologous DNA binding
domain, and the C-terminal basic-helix-loop-helix-zipper
(bHLH-LZ) of Myc resembles those found in certain families
of transcriptional factors. Myc heterodimerizes with another
bHLH-LZ protein, Max, and interacts with the E-box
sequence. The overexpression of c-myc blocks growth-
inhibitory responses to TGF-β. The down-regulation of c-myc

is required for the induction of p15INK4B and p21Cip1 (Warner et
al., 1999; Claassen and Hann, 2000). The repression of the
p21Cip1 transcription by c-myc occurs at the promoter level in a
region near the start site of transcriptional initiation, and it is
independent of histone deacetylase activity. TGF-β prevents
the recruitment of Myc to the p15INK4B transcriptional initiator
by the Myc-interacting Zinc-finger protein 1 (Miz-1). Myc
and Max form a complex with Miz-1 at the p15 initiator, and
inhibit transcriptional activation by Miz-1. The repression
relieves and enables transcriptional activation by a TGF-β-
induced Smad protein complex that recognizes an upstream
p15INK4B promoter region and contacts Miz-1. Thus, two
separate TGF-β dependent pathways, Smad and Myc, keep
tight control over the p15INK4B expression (Seoane et al., 2001;
Staller et al., 2001) (Fig. 1A).

TGF-β induced apoptosis

TGF-β induces apoptosis in several cell types (Rotello et al.,
1991; Oberhammer et al., 1992; Selvakumaran et al., 1994;
Chaouchi et al., 1995; Landstorm et al, 2000; Larisch et al.,

Fig. 1. The cell cycle arrest response to TGF-β A. Two classes of antiproliferative gene responses are known to be induced by TGF-β.
The first is the cdk-inhibitory response that includes the induction of p15, p21, and p27, and the down-regulation of cdc25A. The
second is the c-myc down-regulation that is observed in most cell types. B. The p15 binding to cyclin D-cdk4 leads to the shuttling of
p27 from active cyclin D-cdk4-p27 to cyclin E-cdk2 complexes, resulting in their ultimate inhibition as well.

Fig. 2. Possible pathways of TGF-β induced apoptosis.
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2000; Patil et al., 2000), including normal human B cells and
a lymphoma B-cell line (Chaouchi et al., 1995). The
important role of TGF-β in orchestrating apoptosis in the liver
is indicated by the hepatic fibrosis and apoptotic cell death of
hepatocytes in transgenic mice that ectopically express TGF-
β1 in the liver (McMahon et al., 1986; Sanderson et al., 1995;
Arsora et al., 1997). Current understanding of the mechanisms
elicited by TGF-β is limited mostly to its effects on cell-cycle
arrest. Thus, although TGF-β-induced apoptosis is a well-
documented phenomenon in many different cell types, the
biochemical mechanism responsible for mediating this death
process is still poorly understood. Two independent pathways
have been proposed for TGF-β-induced apoptosis, the Daxx
adaptor pathway and the Smad pathway (Fig. 2). The Daxx
adaptor protein is involved in TGF-β-induced apoptosis
through its ability to interact with type II TGF-β receptors.
The C-terminus of Daxx acts as a dominant negative inhibitor
of TGF-β-induced apoptosis in B-cell lymphomas, and
antisense oligonucleotides to Daxx inhibit TGF-β-induced
apoptosis in mouse hepatocytes (Perlman et al., 2001).

Smad4, an important mediator of TGF-β signaling, induces
apoptosis through the c-Jun N-terminal kinase (JNK) signal
pathway (Atfi et al., 1997; Dai et al., 1999). Smad7 can act as
an effector of TGF-β-induced cell death, but can also protect
cells from apoptosis, depending on the context (Ishisaki et al.,
1998; Landstorm et al., 2000; Patil et al., 2000; Lallemand et
al., 2001). Smad7 promotes apoptosis in prostate and
keratinocyte cell lines, and inhibits the survival factor NF-κB
and potentiates apoptosis in epithelial cells. However, Smad7
inhibits TGF-β-induced apoptosis in two B-cell lines, M1 and
Hep3B. For example, Smad7 is induced by CD40 and
protects WEHI231 B-lymphocytes from the TGF-β-induced
growth inhibition and apoptosis. The AP-1 complex appears
to be involved in cell proliferation and survival. A role for this
multi-component complex in apoptosis has also been
suggested in some cell types (Karin et al., 1997). Recent
studies indicate that Smad3 directly binds c-Jun and c-Fos of
the AP-1 complex (Zhang et al., 1998). Both Smad3 and
Smad4 bind all three Jun proteins-c-Jun, JunB, and JunD
(Liberati et al., 1999). Smad proteins and the AP-1 complex
are involved in TGF-β1 signaling for apoptosis. The
overexpression of a dominant negative Smad3 mutant or
Smad7, both of which impair Smad-mediated signal
transduction, inhibits TGF-β1-dependent apoptosis. Only the
JunD-FosB form of the AP-1 complex is markedly activated
during TGF-β1-induced apoptosis. FosB substantially
enhances the Smad3-Smad4-dependent transcription, and
dominant negative FosB blocks the TGF-β1-induced
apoptosis, but not growth inhibition (Sanchez et al., 1996,
1999; McDonald et al., 1999; Yamamura et al., 2000). These
findings identify Smad proteins as key signal transducers in
the TGF-β-dependent apoptosis. Pro-apoptotic gene targets of
the Smads remain to be identified, although the Bcl-XL

(Saltzman et al., 1998; Chipuk et al., 2001), caspase-8 (Chen
and Chang, 1997; Shima et al., 1999), and PI3K/Akt signaling

pathways (Tanaka and Wands, 1996; Chen et al., 1998; Chen
et al., 1999; Shih et al., 2000) regulate apoptosis genes that
are targets of Smad, and are activated by TGF-β.
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