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ABSTRACT : Construction of highway bridges is almost complete in many countries. Thus, the government and highway
agencies are shifting from construction to maintenance. In order to maintain the bridges effectively, there is an urgent
need to predict their remaining life span from the viewpoint of system reliability. As such, it is necessary to develop
maintenance models based on system reliability concept. In this paper, preventive and essential maintenance models were
developed using system reliability and lifetime distribution.
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1. Introduction used. Because the computation of the system failure
probability is not easy, usually upper and lower
The civil infrastructures are designed to serve the bounds are used.
public. And no matter how well these are designed, In this paper, the lifetime distributions are used to
they are deteriorating with time. The bridges are one compute the failure probability of components or a
of the important civil infrastructures. In order to system instead of limit state functions. And, the
maintain the bridges effectively, there is an urgent lifetime distributions are used to predict the failure
need to predict their remaining life from a system probability of the components or system. The types of
reliability viewpoint, and it is necessary to develop maintenance models are clearly defined and explained.
the maintenance models based on system reliability By using the concept of system reliability and
concept. There are two types of maintenance: Preventive lifetime, the maintenance models are developed.
and Essential. The preventive maintenance are
performed on satisfactorily functioning components 2. Reliability Importance Factors
and the essential maintenance is performed on failed
or malfunction components. Structure function and Reliability function [Leemis
In order to compute the probability of failure of 1995] are useful tools to describe the state of system
components or a system, the limit state functions are with n components. Structure function defines the
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system state as a function of the component state.
The structure function has two values as

0 if the system has failed
¢ (x) =y,

if the system is functioning

where
¢ (x) = Structure function
X = A system state vector, { xy, %9, ", %, |

x; = The state of component i (0:component i

failure, 1:component i is functioning.)

The structure function is deterministic. This
assumption may be unrealistic for certain types of
component system. So, reliability functions (Leemis
1995]) are necessary to model the structures. x; was

defined to be the deterministic state of component i.
Now, «x; has probability. The probability that

component 7 is functioning is given by
p: = Plx; =1] (2)

Where

P: = Probability that component i is functioning

which gives the reliability of component :. If there
are » components, the reliability vector of the
system can be written as

pz{pl’va'"’pn} (3)

The system reliability is defined by

r=np)=Px)=1] (4)
where
R = Quantity that can be calculated from the
vector p

r(p) = Reliability function
¢ (x) = Structure function

i
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One of the lifetime distributions is a survivor
functions. The survivor function is the generalization
of reliability because the survivor function gives the
reliability that a component or system is functioning
at one particular time. The survivor function is
expressed

S®=PT2t] 120 (5)

It is assumed that when #<0,5(» is one. The
survivor function has to satisfy three conditions.
These are

1) SO=1

9) limS() =0

3) () is non-increasing without any maintenance

Several functions are used as survivor functions. In
this paper, the exponential distribution, Weibull
distribution, Log-Logistic distribution, and Exponential
Power distribution are used. These survivor functions
are shown in table 1.

Table 1 Survivor Function

Distribution Survivor function
Exponential exp(—A4¢)
Weibull exp(— (s H%)

1

Log-logistic T1+(A, OF

Exponential- power exp(1—exp(A, H®)

Where
A

If

Failure rate
s Scale factor
Shape factor
Time, ¢20

A
K
t

As an example of a three component series system,
the reliability function is shown in equation 6 if each
component has an exponential survivor function e “.

7’(? =e—~AtX e—AtX e—ktz e—3/1t (6)



When reliability function is known, the reliability
importance of each component in the system can be
calculated. Reliability importance indicates the relative
importance of component with respect to the system
reliability. The reliability importance of component
in a system of % components is

1,09 = 222 )

where
»; = Reliability of component 1

for 1=1,2,--,n. The normalized reliability
importance factor (Gharaibeh 1999, Gharaibeh et al.
1998] is defined as

Q)

PN

IHOE

where
(i) = Normalized reliability important factor

n = Number of component

The normalized reliability importance factor, I° is

between O and 1. The definition of reliability importance

emphasizes the impact of the ™

component on a
system. The component with largest reliability
importance is the component for which an increase in
its reliability corresponds to the largest increase in
the system reliability.

As an example, a four-component system is used to
explain the reliability importance factors from Fig. 1
to Fig. 4. When the probability of failure for components
2, 3, 4 s fixed as 0.5 and that of component 1 varies
from O to 1, the normalized reliability importance
factors are shown in Fig. 1. In Fig. 2, the probability
of failure of component 2 varies from O to 1 and that
of components 1, 3, 4 are fixed. In Fig. 3, the
probability of failure of component 3 varies from 0 to
1. In Fig. 4. the probability of failure for all
components is varied at the same time from O to 1.
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3. Preventive Maintenance Model

Maintenance is defined as any action which retains
non-failed components in operational condition: and
if they have failed, restore them to operational
condition. It involves fixing up partial failures or
incipient failures of independently operating subsystems
of the system. The definition of maintenance implies
two types of maintenance action: Preventive Maintenance
or scheduled and Essential or unscheduled. The
preventive maintenance are performed on satisfactorily
functioning components and the essential maintenance
is performed on failed or malfunction components.

There are two types of preventive maintenance
depending on the maintenance action time. Usually,
after the civil infrastructures are built, there may be
no damage in several years from the time they start
to be in use. If the maintenance action is applied
before the time damage starts, this maintenance
action is called “Pro-Active Maintenance’. And, the
maintenance action after time the damage starts is
called “Re-Active Maintenance’. The main purpose of
pro-active maintenance is to increase the duration of
time at which the damage starts. In Fig. 5, it is easy
to show the effect of pro-active maintenance.

In the figure, the initial probability of failure is P;

and the time at which the damage initiates is #

without pro-active maintenance. If there is pro-active
maintenance, the damage occurs after time £,. Because
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Fig. 5 Effect of Pro-Active Maintenance

of pro-active maintenance action, the damage initiation
time is increased from # to #.

In order to develop pro-active maintenance model,
it is necessary to make the assumption. If there is
enough data about pro-active maintenance action, it
is much easier to develop the computer model.
Unfortunately, there is not enough data about
pro-active maintenance. So, to -develop pro-active
maintenance model, it is needed to talk very deeply
with the maintenance experts, and the following
assumption is made.

Assumption

* The pro-active maintenance action interval, £,
is deterministic.

* The damage initiation time, #;, is deterministic.

* If there is the first pro-active maintenance action
(t,) before the time (#) at which damage

initiates, the damage initiation time is increased
as following.

t

tOl = to + —2l 9

where

t;, = damage initiation time without any pro-active
maintenance effect

t, = pro-active maintenance interval



!y = damage initiation time with the first

pro-active maintenance effect

* If there is the second pro-active maintenance
action ( #;+ t,) before time at which the damage
initiation time with first pro-active maintenance
effect, the damage initiation time with the first
pro-active maintenance effect is increased as
following.

tn
t02 = l’()l + _2" (10)

where
tpp = damage initiation time with the second

pro-active maintenance effect

* This procedure is repeated until the cumulative
pro-active maintenance interval exceeds the
cumulative damage initiation time.

Based on these assumptions, the FORTRAN program
is developed. The Fig. 6 shows the cumulative-time
failure probability when the pro-active maintenance
interval is 3 years and the damage initiation time is
15 years.

Each component has an exponential survivor function

(e ™), and it is assumed that each component is
independent. There is an initial system failure

probability, 10”7 . The failure rate, A, is assumed

T

Intial Faiture Probability = 107
S{t) of Each Component = exp{-0.0051) 3
Damage Initiation Time. t, = 15 years ]
Pro. Act. Maint. = 3 years

14 = 27 years ;

with Pro. Act, Main t.

without Pro. Act. Maint.

Cumulative-Time System Failure Probability, P,
=]
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10‘°E « Proactive Maintenance Action (i = 8) ‘ 3 E
-16 | L
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Time(vears)

Fig. 6 Effect of Pro-active Maintenance
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as 0.005/year for all component. Total number of
pro-active maintenance action is 8. Because of
pro-active maintenance, the damage initiation time
has increased from 15 years to 27 years.

Re-active maintenance is performed on satisfactorily
functioning components at regularly scheduled
intervals, after the system or components start the
damage. The main purpose of re-active maintenance
is to increase the availability of either the system or
components [Kececioglu 1995). Availability is the
probability that the system is operating satisfactorily
at any time after the start of operation. If the failure
rate of components or system increase with time, the
availability decrease with time. If the failure rate of
components or system do not change with time, the
availability of components or system don’t change
with time, If the failure rate of components or system
decrease with time, the availability of components or
system increase with time.

Failure during service life may be much expensive
than re-active maintenance, since they interrupt the
service. The re-active maintenance actions do not
increase significant improvement of the reliability of
components or system, but that extends the service
life and improves the level of service.

In this paper, the mathematical re-active maintenance
model is used from Kececioglu (1995). If the re-active
maintenance is performed every time interval, the
survivor function with that re-active maintenance is
given by

S, (H=[S(2,)1SL? (11)

where

v
i

Survivor function
Sy = Survivor function with re-active maintenance

interval ¢,

j = Number of maintenance action
t = gt,+r
0=z <t,

Based on Equation 11, the survivor function is
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plotted for two-component parallel system. Each vo . ] . l .
component is assumed as independent. In Fig. 7, the 09
survivor function of each component has exponential
distribution, and failure rate is 0.01/hour for each
component,,

Fig. 7 was plotted based on equation 11. From the
figure, it is possible to see that when re-active
maintenance is performed, the slop of cumulative-
time survival probability is the same as that of ™ S0 of Each Componentexp(-0.010 150 howrs
cumulative-time survival probability at which the % R M 2
system starts the service. This means that when Time{hours)
re-active maintenance is performed on a system, the
degradation speed is retarded to original level (the
system starts the service). This can be explained by
time dependent failure rate. In the Fig. 8, the
cumulative time failure probability is shown for one
component whose survivor function is Weibull. The 010
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Fig. 7 Cumulative-Time System Survivor Function with
Re-active Maintenance for Exponential Distribution
of Each Component

1 0.09 -
scale factor ( A,) is assumed as 0.005/year and shape -

factor ( x) is assumed as 2.5. The re-active maintenance Nl

interval is 20 years. For these two cumulative time
failure probabilities, the failure rate is plotted in Fig.
9. From Fig. 9, it is seen that whenever there is
re-active maintenance, the failure rate is retarded to
original level.

In this paper, this re-active maintenance is defined
as ‘Perfect Re-Active Maintenance’. When there is
perfect re-active maintenance on a system, all
components of the system take re-active maintenance Fig. 8 Cumulative-Time Failure Probability for One
at the same time to retard the system failure rate to Component
original level. The perfect re-active maintenance
model is programmed. As an example, the following
figures show the cumulative-time failure probability N oo
with perfect re-active maintenance. i ~ YA

In Fig. 10, the perfect re-active maintenance is
performed every 50 years on three component system.
In Fig. 11, there are just three times perfect
re-active maintenance. If maintenance intervals are
different, the result is shown in Fig. 12. At the first
time, the maintenance interval is 50 years and the
second maintenance interval is 100 years. And, last
maintenance interval is 20 years.

S(t) = exp(-(0.0050*)
07 k=25

006~ without Maintenance ——
with Maintenance
0.05
0.04 -
0.03 -

0.02

Cumuiative-Time Failure Probabiiity, P,

001

0 10 20 30 40 50 60 70 80 90 100

Time(years)

0.005 T T T T

without Maintenance
0,003 Wwith Maintenance

Failure Rate

0.002+ =

0.001 — -

0 { I DO T B
" 20 ) 40 80 0

Time(years)

In real case, the perfect re-active maintenance may
be happened more in Mechanical area not in Civil Fig. 9 Comparison of Failure Rate
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area. If there are just one, two, or partial re-active
maintenance, the equation 11 cannot be used to
compute the system reliability because it increases
the availability of all component in a system. In
order to develop the partial re-active maintenance
model, reliability importance factor is used. The basic
equation is following.

Si (D=S:+(S,(H—S)xIN3) (12)

where

S, (#) = survivor function with component I
re-active maintenance

S, = survivor function

Sy, = survivor function with re-active main-

tenance interval ¢,

L = normalized reliability importance factor

of component i

More general equation of partial re-active maintenance
is written as following.

Si (D=58,+(S, () —S)x 2]12(]) (13)

where
j = Components with re-active maintenance

o

T ! T T T
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o7+ Partial Re-Active. Main. on Come 1, 3

i@) Partial Re-Active Main. on Comp 2, 3

0.6 L1 Partect R Active Maintenence @

8t} of Each Comp. = exp(-0.0056t)

05 Re-Active Maintenance Interval ©
- = 50 yaars

o
©

o
@

4
d)or(c)

0.4

03 @ 0w ]

02k ) .

Cumuiative-Time System Failure Probability, P

12 od -

00 L i |
o 50 100 150 200 250 300

Time{vears)

Fig. 13 Partial Re~Active Maintenance on 3-Component
System with Exponential Survivor Function of
Each Component
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Fig. 13 show the application of partial re-active
maintenance.

Each component has exponential distribution ,and
it is independent. The failure rate is assumed as
0.005/year for each component. The (h) in this figure
shows failure probability with the perfect re-active
maintenance and the (a) is the failure probability
without any maintenance. (b) and (c) show the
probability of failure with the partial re-active
maintenance of component 1, and 2 and (d) is the
partial re-active maintenance of component 3. (f) and
(g) show the partial re-active maintenance of
compone nts 1, 3 and components 2, 3, respectively.

4. Essential Maintenance

The essential maintenance is performed on failed
or malfunctioning components. Such maintenance is
performed at unexpectable intervals because the time
to any specific component’s failure cannot be
established. The main purpose of essential maintenance
is to restore such components to safe function within
the shortest possible time by replacing components.

In this paper, it is assumed that the essential
maintenance is performed on components, or system
by only replacing them.

Based on an assumption just mentioned, the
computer model of essential maintenance is developed.
The 3-component system shown in Fig. 14 is used to
explain the essential maintenance model.

Each component has exponential distribution. It is
assumed that all components are independent and
their failure rate is 0.005/year. The survivor function
of the system is

3

Fig. 14 Three Component System
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S() =1-[1-81()S:(HN1— S3(P]

=1 (1 — g~ 0006t =005y __ ,—0.006¢)

where
S{® = survivor function of component i

If the essential maintenance is performed on
component 1 at year 100, the survivor function at
year 100 is written as following.

S() =1-[1-S1()Sx(DI[1-S;(H]

=1_(1___e~0.005><oe—0.005><100) (15)

(1 —e —0.005><100)

After this essential maintenance, if the essential
maintenance is performed on component 2 at year
150, the survivor function at year 150 is

S() =1-[1-S1() S (HI[1 - S5(H]

=1_(1"‘€—0'005X506_0'005x0) (16)

(1 —e —0.005><150)

And, if the essential maintenance is performed on
components 1, 2, and 3 at year 400, the survivor
function at year 400 is

S() =1-[1-S1(HS,(HI[1—S3(H]
=1—(1— g 05x0 5 —0.005x0y 17
(1 —e —0.005X0)
The failure probability of essential maintenance
effect is shown in Fig. 15. From this result, it is

shown that the survivor function is not cumulative
when there is essential maintenance.

5. Application of Maintenance Model

The preventive maintenance and essential maintenance
are programmed. In this section, the applications will



-
o

T T l T

§(t) of Each Component = exp(-A1) _|
i [ 2 |

A = 0.005/year
[” ® Essential Maint. of Components 12,3

| O Essental Maint. of Component 2
@ Essental Maint. of Component 1

05 -1

)
©

o
®

e
~

=4
o

0.4+ —

03 =1

System Failure Probabiity, P,

02~ A

0.1— ~1

00 i I L

Tima (years)

Fig. 15 Essential Maintenance on 3-Component System

D

B s i i

Fig. 16 Bridge Cross Section

SahCané
®® @E

Fig. 17 Bridge Failure Mode

be shown.

As an example, a composite bridge shown in Fig.
16 is used. The bridge has a deck and four steel
girders. The lifetime distribution is assumed as
Weibull survivor function for each bridge component
(deck and girders). The scale factor and shape factor
of a concrete deck and steel girders are assumed as
0.005/year and 1.5, respectively. The failure mode of
the bridge is assumed that any two adjacent girder
failures or deck failure cause the bridge failure. The
failure mode is shown in Fig. 17.

where
D
Gi

i

deck failure
failure of girder i

If the re-active maintenance interval is 10 years,
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Fig. 19 System Failure Probability with a Target Failure
Probability 0.1

the probabilities of failure with re-active maintenance
and without re-active maintenance are shown in Fig.
18.

If there is a target failure probability 0.1, the
system failure probability is shown in Fig. 19.

In Fig. 19, when the system failure probability
reaches the target failure probability 0.1, all
components in a bridge are replaced.

6. Conclusion

Based on the concept of system reliability and
lifetime function, the FORTRAN program was developed
for each maintenance models. The availability is
considered for preventive maintenance and the
replacement is considered for essential maintenance.
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Using the essential maintenance model developed
in this paper, the optimum maintenance strategy can
be obtained. In the application, if the system failure
probability reached the target failure probability, all
components in a system were replaced. However, in
real case, it may be possible to choose the options
(replace deck or interior girders or exterior girders,
etc.).

The main concern of the preventive maintenance is
to calculate the optimum preventive maintenance
interval. Using preventive maintenance, the reliability
of the bridge can not be increased, but the service life
of the bridge can be increased.

The maintenance models developed in the paper
can be applied to any structure which is expressed as
a combination of series and parallel systems.
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