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Introduction

Apoptosis is responsible for normal tissue homeostasis and is
known to mediate pathological cell loss (Fulton, 1996;
Nagata, 1997; Salvesen and Dixit, 1997; Wallach, 1997;
Wyllie, 1998). Apoptosis is characterized by morphological
changes. These include cell body and nuclear breakdown,
chromatin condensation and fragmentation, and formation of
apoptotic bodies (Erhardt and Cooper, 1996; Kothakota et al.,
1997; Liu et al., 1997; Enari et al., 1998; Janicke et al., 1998a,
b; Zheng et al., 1998; McIlroy et al., 1999; Sakahira et al.,
1999; Zhang et al., 1999; D’Mello et al., 2000). Recently,
molecular details of apoptosis was elucidated, and apoptotic
genes and proteins were increasingly characterized (Du et al.,
2000; Srinivasula et al., 2000; Wu et al., 2000). Several
apoptotic-signaling pathways have been suggested. Receptor-
mediated apoptosis is characterized by the formation of the
death-inducing signaling complex (DISC), comprising the Fas
receptor, FADD, FLASH, procaspase-8 and other proteins
(Minn et al., 1996; Muzio et al., 1996; Stennicke and
Salvesen, 1997; Chen et al., 1998; Widmann et al., 1998; Yeh
et al., 1998). Procaspase-8 is processed to active caspase-8,
which in turn cleaves downstream signaling proteins like
procaspase-3. On the other hand, chemical-induced apoptosis
generally leads to mitochondrial damage and the subsequent
release of cytochrome c (Krippner et al., 1996; Chauhan et al.,
1997; Kluck et al., 1997; Yang et al., 1997; Eskes et al., 1998;
Bossy-Wetzel and Green, 1999; Fiers et al., 1999; Granville et
al., 1998; Gross et al., 1999; Kluck et al., 1999; Martinou,
1999; Schapira, 1999). This protein associates with Apaf-1,
caspase-9 and dATP to form a multiprotein complex called the
apoptosome (Li et al., 1997; Yang et al., 1997; Zou et al.,
1997; Srinivasula et al., 1998; Chinnaiyan, 1999; Fujita et al.,
1999; Hu et al., 1999; Krajewski et al., 1999; Stennicke et al.,

1999; Zou et al., 1999; Cain et al., 2000; Purring-Koch and
McLendon, 2000). This complex acts as a kind of
holoenzyme that activates procaspase-3 and -7. DFF45/ICAD
is cleaved by active caspase-3 to release its complexed DNase,
DFF40/CAD, which in turn degrades nuclear DNA (Liu et al.,
1998; Zheng et al., 1998; Liu et al., 1999; McCarty et al.,
1999; Wolf et al., 1999). Caspase-3 is also responsible for the
processing of Acinus, a chromosomal condensation factor
(Sahara et al., 1999). A cross-talk exists between the two
apoptotic pathways, which are not exclusive of each other.
Caspase-8 cleaves Bid, which in turn acts on mitochondria to
release cytochrome c (Scaffidi et al., 1997; Juo et al., 1998;
Luo et al., 1998; Srinivasan et al., 1998; Gross et al., 1999;
Kluck et al., 1999; Lin et al., 1999; Sun et al., 1999; Tan et
al., 1999; Zhuang et al., 1999; Liu et al., 2000). Conversely,
caspase-3 and other downstream caspases activate procaspase-
8 (Stennicke and Salvesen, 1997; Stennicke et al., 1998). The
requirement for this activation is unclear, but possibly occurs
to induce amplification of the apoptotic signal. Recently,
caspase-12 was identified on endoplasmic recticulum (ER)
(Nakagawa et al., 2000). The activation pathway of the
caspase was mediated by m-calpain, which suggests that the
change of the intracellular calcium concentration may be the
triggering signal. The caspase was also cleaved and activated
by caspase-7. This observation provides the link between
chemical or receptor-mediated and ER-mediated apoptosis.
However, until recently none of the caspase-12 substrates
were identified, except the caspase itself. How the caspase
induces apoptosis remains to be elucidated.

During apoptosis, several physiological changes are
observed. It is known that the pH in cells that undergo
apoptosis drops. It is also known that calcium influx occurs
and potassium and chloride ions efflux in cells that undergo
apoptosis (Bortner et al., 1997; Yu et al., 1997; Bortner and
Cidlowski, 1999). However, the molecular details of the
physiological changes are largely unknown. Recently several
reports have indicated the importance of the changes for
ensuring cell death. Here, the relationship between potassium
efflux and apoptosis is reviewed.
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Potassium efflux during apoptosis

Potassium is a major intracellular ion. Several lines of studies
indicate that the enhancement of potassium current is directly
involved in apoptosis (Bortner et al., 1997; Yu et al., 1997;
Dallaporta et al., 1998; Hughes et al., 1997; Orlov et al.,
2000; Shieh et al., 2000). In the neuronal cell, the
tetraethylammonium (TEA)-sensitive potassium current was
enhanced by serum deprivation or staurosporine. Inhibition of
outward potassium currents with TEA or elevated
extracellular potassium, but not with blockers of chloride or
other potassium channel blockers, did reduce apoptosis. It is
also shown that exposure to the potassium ionophore
valinomycin induced apoptosis. In thymocyte, apoptosis that
was induced by dexamethason, etoposide, or ceramide was
also repressed by the potassium channel blocker TEA
(Franklin et al., 1995; Hughes et al., 1997; Hughes and
Cidlowski, 1999; Yu et al., 1999). The tumor necrosis factor
(TNF) also had an effect on the ion channel opening and death
in the rat liver cell line. TNF elicited 2- and 5- fold increases
in potassium and chloride current. The activation of the
potassium channel may be an early response to TNF signaling
(Kampf et al., 1999; Nietsch et al., 2000; Penning et al.,
2000). As a result of the potassium efflux, the concentration
decreases from ~140 mM, the normal physiological
concentration to 30~50 mM.

Signal transduction related with potassium efflux

The loss of the intracellular potassium during apoptosis is an
early requisite feature, although how it is regulated on the
apoptotic signal is unknown. One report provided evidence
that the protein kinase C (PKC) may be involved in the
process (Gomez-Angelats et al., 2000; Nietsch et al., 2000).
Anti-Fas induced cell shrinkage is thought to be a result of the
loss of the intracellular potassium that was blocked by PKC
stimulation. Conversely, the inhibition of PKC enhanced the
anti-Fas-mediated loss of cell volume. From this result, it was
proposed that PKC could regulate the ion channel and block
the initial loss of intracellular potassium and cell shrinkage.
PKC is a well-known substrate of caspase. Also, the
stimulation of PKC prevented the cleavage of PKC during
apoptosis. Although there is no evidence yet, observations
suggest that the initial apoptotic pathway propagates and
results in the activation of caspase, which in turn inactivates
PKC by cleavage to unlock the inhibitory role of the kinase on
the potassium channel.

Inhibition of apoptosome formation by intracellular 
potassium

Stress-induced apoptotic cell death is triggered by the release
of the mitochondrial cytochrome c (Kluck et al., 1997; Vier et

al., 1999). The mitochondrial protein (together with Apaf-1 an
dATP) induces the processing of caspase-9 and initiates the
caspase cascade (Li et al., 1997; Yang et al., 1997; Zou et al.,
1997; Srinivasula et al., 1998; Chinnaiyan, 1999; Fujita et al.,
1999; Hu et al., 1999; Krajewski et al., 1999; Stennicke et al.,
1999; Zou et al., 1999; Cain et al., 2000; Purring-Koch and
McLendon, 2000). Apaf-1, the first identified mammalian
homolog of CED-4, is an ~130-kDa that contains an N-
terminal caspase recruitment domain, a CED-4 homology
region, and WD-40 repeats. Recent studies indicate that in the
presence of cytochrome c and dATP/ATP, Apaf-1 undergoes
oligomerization to form large apoptosome complexes with
molecular masses of 700~1400 kDa (Cain et al., 2000;
Hausmann et al., 2000; Purring-Koch and McLendon, 2000).
The apoptosome complex recruits and activates procaspase-9,
which forms a holoenzyme complex. As a result, caspase-9 is
activated and processes the downstream caspase.

Initial studies indicate that the interaction of purified
cytochrome c with Apaf-1 strongly depends on the ionic
strength. Two cytochromes c bind to one Apaf-1 with Ka at
zero NaCl of approximately 1010 M−1 that decreased to Ka at
200 mM NaCl of approximately 107 M−1. Recently, another
line of study demonstrates that the assembly of the active
complex is suppressed by normal intracellular concentrations
of potassium (~150 mM). Using a defined apoptosome
reconstitution system with recombinant Apaf-1 and
cytochrome c, potassium also inhibited caspase activation by
abrogating the apoptosome formation. This study suggests
that the normal intracellular concentration of potassium
suppresses the cell death by inhibiting the formation of the
Apaf-1 apoptosome complex.

One question regarding this is whether the release of
cytochrome c from the mitochondria during stress-induced
apoptosis occurs in the presence of the intracellular potassium.
One clue from our studies is that the apoptosis, which is
induced by staurosporine in the neuroblastoma cell line and
HeLa cell, was significantly inhibited by ~150 mM potassium
in the media, while the release of cytochrome c still occurs
(unpublished result). Consistent with the inhibition of the
apoptosome formation by 150 mM potassium in the
reconstituted experiment, the protein complex was not
formed. This indicates that the inhibitory effect of the
intracellular potassium on the apoptosis may have an effect
that is mainly on the formation of the protein complex. This
result is compatible with the suggestion that for the apoptosis
to occur through the mitochondial pathway, the intracellular
potassium should be removed by a mechanism that has not yet
been identified. Other groups, however, reported that the
cytochrome c release from mitochondria during apoptosis is
greatly reduced in the presence of a high concentration of
potassium (Maeno et al., 2000). These controversial
observations may reflect the complexity and diversity of the
inhibitory mechanism of potassium against apoptosis.
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The effect of potassium on the downstream of the 
Apaf-1 apoptosome formation

Potassium also inhibits apoptotic DNA fragmentation, one of
the hallmarks of apoptosis (Hughes et al., 1997; Bortner and
Cidlowski, 1999; D’Mello et al., 2000). In the cell-free system
experiment with the apoptotic cell extract and isolated nuclei,
DNA fragmentation was significantly inhibited by potassium
at a high concentration. DFF40/CAD is the main DNase that
is responsible for the DNA fragmentation, however, which
DNase is directly influenced by the ion is unknown. In our
experiment, purified CAD showed decreased activity under a
high concentration (>100 mM) of potassium. This is
consistent with the inhibitory effect of potassium on the DNA
fragmentation (unpublished results). Potassium, however, did
not inhibit the activity of caspase-3 once activated. Nuclear
fragmentation and chromatin condensation are also important
hallmarks of apoptosis. In many cases, DNA fragmentation is
accompanied by nuclear fragmentation and chromatin
condensation; however, it is reported that nuclear
fragmentation and chromatin condensation could occur
without DNA fragmentation (Sahara et al., 1999). One
candidate that is responsible for the apoptotic chromatin
condensation is Acinus. When it is used in a cell free system,
the chromatin condensation and nuclear fragmentation that are
independent of DNA fragmentation are shown to be also
significantly suppressed by potassium at more than 100 mM
(unpublished result).

Conclusion

The blockage of potassium loss by a high concentration of
extracellular potassium repressed apoptosis. When
sympathetic neurons were maintained in a suboptimal
concentration of neurotrophin, the coincident depolarization
with concentrations of KCl, which on their own had no

survival effect, synergistically enhanced survival (Vaillant et
al., 1999). This may be attributed to the activation of the Ras-
phophatidylinositol 3-kinase-Akt pathway. This illustration
may be helpful in the prevention or cure of some degenerative
diseases, such as Alzheimers disease.

As potassium efflux is an essential part of apoptosis, the
existence of the signal to the potassium channel is evident,
although it remains to be elucidated. Uncovering the pathway
will greatly increase our understanding of the important
physiological process. In summary, apoptotic pathways that
are sensitive to intracellular potassium or blocked by
inhibition potassium efflux are indicated (observations in
Figure 1).
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