적조생물 Prorocentrum minimum의 숙주-기생자 배양체: (1) 기생성 와편모류 Amoebophrya sp.의 생활사 단계

Host-Parasite System in a Red Tide Dinoflagellate Prorocentrum minimum: (1) Life Cycle Stages of the Parasitic Dinoflagellate Amoebophrya sp.

  • 발행 : 2002.11.01

초록

한국 서해안의 곰소만에서 숙주-기생자 배양체 Prorocentrum minimum- Amoebophrya sp.를 분리하여 실험, 배양하는데 성공하였다. 본 연구는 이 숙주-기생체를 실험배양 하면서 광학 및 형광현미경 관찰을 토대로 규명된 적조생물 P minimum을 숙주로 하는 기생성 와편모류 Amoebophrya sp.의 생활사 단계를 보고한다. 이 기생성 와편모류에 의한 감염은 숙주 P minimum의 핵 내부에서 일어나고, 성장하여 결국은 세포질을 포함한 숙주 세포 공간의 대부분을 차지한다. 이 영양체의 세포 내의 성장이 완결되면 숙주의 각을 열고 세포 밖으로 나온다. 숙주 세포 밖의 자유유영 생활사 단계인 vermiform stage를 거쳐, 순간적으로 발산하여 수많은 dinospore를 형성하는 단계에 이른다. 우리나라 연안해역에서 춘·하계에 대규모 적조를 일으키는 원인 생물인 P. minimum과 이에 기생하는 본 Amoebophrya sp.의 숙주-기생배양체는 생물학적 적조제어기술 개발을 위한 중요한 생물재료의 하나이다.

The first laboratory culture of host-parasite system of Prorocentrum minimum- Amoebophrya sp. was established by single cell isolation method. Here, we report the life cycle stages of the parasitic dinoflagellate. Amoebophrya sp. of the red tide dinoflagellate P. minimum as observed by light and epifluorescence microscopy. Infections developed inside the nucleus of P. minimum. The trophont developed to occupy almost all the intracellular space of the host at its late stage. The fully developed trophont finally ruptured through the host cell. “Vermiform stage”, the free-swimming extracellular lift cycle stage is followed by another stage for the sudden release of many individual dinospores. Our laboratory strain of the host-parasite system for P. minimum, a causative species fur the huge red tides in spring and summer in Korean coastal waters, could be a useful living material for the in situ biological control of harmful algal blooms.

키워드

참고문헌

  1. 한국 연안의 적조 국립수산진흥원
  2. 한국조류학회지 v.1 적조와편모조류의 생태학적 연구 2. Prorocentrum minimum(Pav.) Schiller의 군중식 김학균
  3. 한국환경과학회지 v.4 Prorocentrum속에 관한 연구 문성기;이삼근;홍채규
  4. 한국해양학회지-바다 v.7 기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조 박명길
  5. 한국환경생물학회지 v.16 적조원인종인 Prorocentrum minimum의 온도에 따른 생화학적 조성 변화 장만;조진아;신경순;이우성;이택견
  6. 한국환경생물학회지 v.16 적조원인정인 Prorocentrum minimum의 광도에 따른 생화학적 조성 변화 조진하;이택견;신경순;이우성;장만
  7. 한국환경생물학회지 v.18 마산-진해만에서 Prorocentrum 개체군의 발생양상과 분포 최만영;곽승국;조경제
  8. The Biology of Donoflagellates Parasitic dinoflagellates Cachon, J.;M. Cachon;Taylot, F.J.R.(ed.)
  9. Ann. Sci. Nat. Zool. v.6 Contribution a l'eude des peidiniens parasites. Cytologie, cycles eolutifs Cachon, J.
  10. Journal of Eukaryotic Microbiology v.41 no.6 Occurrence of the parasitic dinoflagellate Amoebophrya ceratii in Chesapeake Bay populations of Gymnodinium sanguineum Coats, D.W.;K.R. Bockstahler https://doi.org/10.1111/j.1550-7408.1994.tb01520.x
  11. J. Phycol. v.24 Effect of light history on the ultrastructure and physiology of Prorocentrum mariae-lebouriae (Dinophyceae) Coats, D.W.;L.W.Jr. Harding https://doi.org/10.1111/j.1529-8817.1988.tb04457.x
  12. Journal of Phycology v.38 no.3 Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya(Dinophyta): Parasite survival, infectivity, generation time, and host specificty Coast, D.W.;M.G. Park https://doi.org/10.1046/j.1529-8817.2002.t01-1-01200.x
  13. Journal of Eukaryotic Microbiology v.46 no.4 Parasitic life styles of marine dinoflagellates Coast, D.W. https://doi.org/10.1111/j.1550-7408.1999.tb04620.x
  14. Journal of Phycology v.35 no.6 Algicidal bacteria active against Gymnodinium breve(Dinophyceae).Ⅰ. Bacterial isolation and characterization of killing antivity Doucette, G.J.;E.R. McGovern;J.A.;Babinchak https://doi.org/10.1046/j.1529-8817.1999.3561447.x
  15. Nippon Suisan Gakkaishi v.58 Isolation and properties of a bacterium inhibiting the growth of Gymnodinium nagasakiense Fukami, K.;A. Yuzawa;T. Nishijima;Y. Hata https://doi.org/10.2331/suisan.58.1073
  16. Nippon Suisan Gakkaishi v.57 Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth Fukami, K.;T. Nishijima;H. Murata;S. Doi;Y. Hata https://doi.org/10.2331/suisan.57.2321
  17. Journal of Eukaryotic Microbiology v.46 no.1 Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellates Jeong, H.J.;J.H.;Shim;C.W. Lee;J.S. Kim;S.M. Koh https://doi.org/10.1111/j.1550-7408.1999.tb04586.x
  18. Marine Ecology Progress Series v.176 Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellates Jeong, H.J.;J.H. Shim;J.S. Kim;J.Y. Park;C.W.;Lee;Y. Lee https://doi.org/10.3354/meps176263
  19. Aquatic Microbial Ecology v.28 no.3 Growth nad grazing rates of the prostomatid ciliate Tiarina fusus on red-tide and toxic algae Jeong, H.J.;J.Y. Yoon;J.S. Kim;Y.D.;Yoo;K.A. Seong https://doi.org/10.3354/ame028289
  20. Journal of Eukaryotic Microbiology v.48 no.3 Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide toxic dinoflagellates Jeong, H.J.;S.K. Kim;J.S. Kim;S.T. Kim;Y.D. Yoo;J.Y. Yon https://doi.org/10.1111/j.1550-7408.2001.tb00318.x
  21. Marine Biology v.128 no.3 Growth and grazing responese of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsa circularisquama Kamiyama, T. https://doi.org/10.1007/s002270050117
  22. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. v.54 Intracellular bacteria in the red tide-forming heterotrophic dinoflagellate Noctiluca scintillans Kirchner, M.;G. Sahling;C. Schutt;H. Dopke;G. Uhlig
  23. Appl. Environ. Microbiol. v.64 Algacidal effects of a novel marine Pseudoalteromonas isolate (Class Proteobacteria, Gamma Subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma Lovejoy, C.;J.P. Bowman;G.M. Hallegraeff
  24. Journal of Phycology v.37 no.2 Infection of Prorocentrum minimum (Dinophyceae) by the parasite Amoebophrya sp. (Dinoflagellea) Maranda, L. https://doi.org/10.1046/j.1529-8817.2001.037002245.x
  25. Aquatic Microbial Ecology v.17 Grazing impacts of the heteroprophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum Matsuyama, Y.;M. Miyamoto;Y. Kotani https://doi.org/10.3354/ame017091
  26. Handbook of Methods in Aquatic Microbial Ecology A quantitative protargol stain(QPS) for cilates and other protists Montagnes, D.J.S.;D.H. Lynn;Kemp, P.F.(ed.);B.F. Sherr(ed.);E.B. Sherr(ed.);J.J. Cole(ed.)
  27. Marine Ecology Progress Series v.125 Population dynamics of heteroptophic dinoflagellates during a Gymnodinium mikimotoi red tide in the Seto Inland Sea Nakamura, Y.;S. Suzuki;J. Hiromi https://doi.org/10.3354/meps125269
  28. Ph. D. Thesis Phytoplankton dynamics on a short time scale in Masan Bay Pae, S.J.
  29. Marine Ecology Progress Series v.152 Mixotrophy in the dinoflagellate Prorocentrum minimum Stoecker, D.K.;A. Li;D.W. Coats;D.E. Gustafson;M.K. Nannen https://doi.org/10.3354/meps152001
  30. Aquatic Microbial Ecology v.23 Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa cirularisquama Tarutain, K.;K. Nagasaki;S. Itakura;M. Yamaguchi https://doi.org/10.3354/ame023103
  31. J. Fish. Res. Bd. Can. v.25 Parasitism of the toxin-producting dinoflagellate Gonyaulax catenella by the endoparasitic cinoflagellate Amoebophrya ceratii Taylor, F.J.R. https://doi.org/10.1139/f68-197
  32. Limnol. Oceanogr. v.23 Annual subsurface transport of a red tide dinoflagellate to its bloom area: water circulation patterns and organism distributions in the Chesapeake Bay Tyler, M.A.;H.H. Seliger https://doi.org/10.4319/lo.1978.23.2.0227
  33. Limnol. Oceanogr. v.26 Selection for a red tide organism: physiological responses to the physical environment Tyler, M.A.;H.H. Seliger https://doi.org/10.4319/lo.1981.26.2.0310
  34. J. Oceanol. Soc. Korea. v.21 Taxonomical studies on dinoflagellates in Masan Bay.1. Genus Prorocentrum Ehrenberg Yoo, K.I.;J.B. Lee
  35. Coastal fish farms and shelf pollution Fish farms Kubota, T.;Gakkai, N.S.
  36. Marine Pollution Bulletin v.16 no.10 A sediment quality traid Long, E.R.;P.M. Chapman https://doi.org/10.1016/0025-326X(85)90290-5
  37. Gen. Syst. v.3 Information theory in ecology Magalef, R.
  38. Oceanogr. Mar. Biol. Annu. Rev. v.16 Marcrobenthic succseeion in relation to organic enrichment and pollution of the marine environment Pearson, T.H.;R. Rosnberg
  39. Marine Biology v.53 no.4 Comparative measurements of the redox potentials of marine sediments as a rapid means of assessing the effect of organic pollution Pearson, T.H.;S.O. Stanley https://doi.org/10.1007/BF00391620
  40. Journal of Theoretical Biology v.13 no.1 The measurement of diversity in different types of biological collection Pielou, E.C. https://doi.org/10.1016/0022-5193(66)90013-0
  41. Pub. Health Rep. v.70 no.12 The relation of polychaetous annelids to harbor pollution Reish, D.J. https://doi.org/10.2307/4589315
  42. Marine pollution and sea life The use of marine invertebrates as indicators of varying degrees of marine pollution Reish, D.J.;Ruivo, M.(ed.)
  43. Marine Biology v.103 no.2 Response to organic enrichment of infaunal macrobenthic communities under salmonid seacages Ritz, D.A.;M.E. Lewis;M. Shen https://doi.org/10.1007/BF00543349
  44. The mathematical theory of commnuication Shannnon, C.E.;W. Weaver
  45. Nat. v.163 no.688 Measurement of diversity Simpson, E.H.
  46. Coastal fish farms and shelf pollution Deposition process of pollutants Tanaka, Y.;Gakkai, N.S.
  47. Publ. Amakusa Mar. Biol. Lab. v.7 Bnthic ecology of a small cove with seasonal oxygen depletion caused by organic pollution Tsutsumi, H.;T. Kikuchi
  48. Marine Pollution Bulletin v.23 Benthic faunal succession in a cove organically polluted by fish farming Tsutsumi, H.;T. Kikuchi;M. Tanala;T. Higashi;K. Imasaka;M. Miyazaki https://doi.org/10.1016/0025-326X(91)90680-Q
  49. Journal of Experimental Marine Biology and Ecology v.145 no.2 Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis Ye, L.X.;D.A. ritz;G.E. Fenton;M.E. Lewis https://doi.org/10.1016/0022-0981(91)90173-T