Steel-Concrete Column의 구조성능에 관한 실험 연구

An Experimental Study
on the Structural Capacities of Steel-Concrete Column

김 성 재" • 박 순 전 ${ }^{22}$ • 정 석 창 ${ }^{3)}$ - 김 상 대 ${ }^{4)}$
Kim, Seong Jae Park, Soon Jeon Jeong, Sug Chang Kim, Sang Dae

Abstract

요 약:Steel-Concrete Column은 H형강의 플랜지 사이에 후프를 용접하고 플랜지 사이의 공간에 콘크리트가 채워진 새로운 합성기 둥이다. 본 연구에서는 이 새로운 합성 기둥의 구조성능을 평가하기 위하여 단주압축, 횜, 전단실험을 수행하였다. 각 실험별 실험체들을 순철 골 실험체와 철골 콘크리트 실혐체로 구성하여 Steel-Concrete Column을 구성하는 철골, 내부 콘크리트, 후프의 내력기여도를 평가할 수 있 도록 하였다. 실험결과 Steel-Concrete Column은 「강구조 한계상태 설계 기준」 에 의해 계산된 내력값을 충분히 만족하여 구조부재에 적용 가능하다고 판단된다.

ABSTRACT : Maximum-strength concrete-filled steel square tubular columns were tested under concentric and biaxial eccentric load. Buckling length-section depth ratio L_{k} / D, magnitude of eccentricity e, and angle of eccentric load θ were selected as experimental parameters. Strength and behavior were also examined. Test results showed that the maximum strength of columns under biaxial eccentric load could be predicted using the previously proposed strength formula of columns under uniaxial eccentric load. Likewise, the behavior and maximum strength of columns could be predicted using the analysis.

핵 심 용 어 : 편심압축력, 2 축횝. 최대내력, 충전각형강관기둥
KEYWORDS : Eccentric load, Biaxial bending. Maximum strength, Filled steel square tubular columns

1. 서 론

초기의 합성기둥(철골철근콘크리트 기둥)은 철골기둥에 내 화피복 및 방청효과를 제공하는 것을 목적으로 미국에서는 1900 년. 일본에서는 1920 년경부터 적용되기 시작한 이후로 최근까지 국내외의 많은 구조물에 적용되고 있다. 이러한 합 성기둥은 철근콘크리트 기둥에 비해 상대적으로 저렴한 콘크 리트의 압축 내력 기여도로 인한 공사비 절감, 우수한 내화성 과 방청효과, 콘크리트에 의한 국부좌굴 및 횡좌굴 방지효과 등의 장점을 가지고 있다. 이러한 합성기둥에 관한 연구로 최 근 국내에서는 기존의 철골철근콘크리트 기둥 $(\mathrm{SRC}$ 기둥)에 이어서 CFT(Concrete Filled Steel Tube) 기둥에 관한 연구 ${ }^{2}$ 가 광범위하게 진행되고 있다.

[^0]기존의 SRC 기둥은 철골을 골조로 하여 주위에 재축 방향 철근과 후프를 배근하고 콘크리트를 타설하여 이들 3개의 재 료가 서로 일체가 되게 한 합성기둥이다. 이 구조 방식은 1923 년 일본의 관동 대지진 발생시 탁월한 내진성을 발휘하 여 화재 및 지진에 피해가 적었기 때문에 당시 일본에서는 6 충에서 9 충까지의 건물이 대부분 SRC 구조로 세워졌지만, 그 당시에는 특별한 계산규준이 없어 몇몇의 실험결과를 참고하 여 설계자의 자율적인 판단에 의하여 설계되었다. 그 후 일본 에서는 1950년대, 미국 및 유럽에서는 1970년대 이후 SRC 구 조에 대한 연구가 활발히 진행되어졌고 최근 아시아 각국에 서 건축물의 고층화와 내진성 강화를 목적으로 여러 도시에 서 SRC 구조를 채택하고 있다. 그러나 이러한 SRC 구조 방 식은 철골 공사에 비해 철근 배근과 거푸집 공사 등에 많은

본 논문에 대한 토의룰 2003 년 6 월 30 일까지 학회로 보내주시면 토의 회답을 게재하겠습니다.

인력, 비용, 시간 등을 필요로 하는 구조시스템이다.
또한 최근 국내외에서 활발히 연구되고 있는 CFT 기둥은 철 근이 배근되지 않은 강관 내부에 콘크리트를 채워 넣어서 거 푸집 공사를 없앤 것으로 내부에 충전된 콘크리트가 외부강 관의 국부좌굴을 억제하고 내부의 콘크리트에 대한 외부강관 의 구속에 의해 내부 콘크리트의 압괴가 억제되어 콘크리트 의 내력이 상숭하게 하는 것으로 단면의 증가 없이도 부재의 내력을 증가시킬 수 있는 시스템이다. 또한 변헝성능이 향상 되고 좌굴 후의 내력저하가 적어 내진성능이 우수하여 순수 철골기둥이나 SRC 기둥에 비해 경제적, 구조적으로 우수한 시스템으로 주목받고 있다. 그러나 CFT 기둥은 내부 콘크리 트 충전, 충전상태의 육안 확인 및 보-기둥 접합부에서 시공 상의 어려움이 있어, 이에 대한 개선 연구가 현재 활발히 진 행 중이다. ${ }^{2}$

최근 유럽 ${ }^{5(6)}$, 북미지역 ${ }^{88}$, 일본 ${ }^{4)}$ 등에서는 기존의 합성기둥 들이 가지는 내력상승, 내화성, 방청효과 뿐만 아니라 거푸집 공사의 절감으로 인한 공사기간 단축이 가능하고, 충전상태의 육안 확인도 용이한 Steel-Concrete Column(이하 SC Column)에 대한 연구를 수행해오고 있다.

본 연구에서는 국내의 중저층 구조물에 SC Column을 활 용하기 위하여 SC Column의 구조성능을 압축, 횜, 전단 실 험을 통하여 규명하고, 국내의 기준과 비교하여 이의 적용여 부를 검토하는 것을 목적으로 한다.

2. SC Column의 구조적 특징

SC Column은 철골기둥에 비해 단면의 내력을 증가시켜 철 골물량을 감소시키고, 기존의 SRC 기둥에서 요구되는 철골 외 부의 주근 및 후프의 배근을 없애고, 거푸집 공사의 절감 및 간 략화로 공사기간을 단축시키기 위한 시스템으로 연구되었다.

그림 1. SC Column 개념도

그림 2. SC Column 개념도(단면)

SC Column은 철골 기둥의 플랜지 사이에 이형철근을 후 프의 역할을 하도록 공장에서 용접하여 제작(그림 1)하고 현 장세우기한 후. 철골의 푤랜지 사이의 양면에만 시스템 거푸 집을 사용(그림 2)하여 콘크리트를 채워서 철골의 플랜지 2 면과 콘크리트 2 면이 기둥의 4 면을 구성하도록 한 기둥이다.
(그림 2)에서 보이는 이형철근으로 플랜지 면에 용접되는 후프는 SC Column의 콘크리트 면에서 내부 콘크리트에 대 한 구속력을 제공하여 내부 콘크리트의 내력과 항복 후 연성 거동을 증가시키는 역할을 한다.

내부 콘크리트는 축하중을 철골과 분담하여 기둥단면의 축 내력을 증대시키므로 콘크리트에 비해 상대적으로 비싼 철골 의 물량을 감소시키며, 합성기둥의 열용량이 증가되어 내화성 이 개선되게 된다.

3. 실험계획

3.1 압축실험체

SC Column의 압축내력을 평가하기 위해서는 SC Column을 구성하는 철골, 콘크리트, 후프의 내력기여도에 대한 평가가 있어야 한다. 따라서 압축실험체는 이들의 내력 기여도를 평가할 수 있도록 (표 1)과 같이 순철골 실험체 $(\mathrm{C}-\mathrm{COHO})$, 철골 내부에 콘크리트만 채운 실험체 ($\mathrm{C}-\mathrm{C} 1 \mathrm{H} 1$), 철골 플랜지에 후프를 용접한 후 내부에 콘크리 트를 채운 실험체 $(\mathrm{C}-\mathrm{ClH1})$ 로 구성하였다. 이는 순철골 기 둥의 내력, 내부 콘크리트의 내력기여도, 후프에 의한 내부 콘크리트 구속의 효과를 평가하여 SC Column의 압축내력 을 평가할 수 있도록 계획된 것이다. 압축실험에 사용된 철골 은 $\mathrm{H}-125 \times 125 \times 6.5 \times 9$ 단면으로 좌굴의 효과를 최소화하 기 위해 단면 폭의 3 배인 37.5 cm 의 길이가 선택되었다. 후 프는 「강구조 한계상태 설계기준」1)의 SRC 기둥의 구조제 한을 만족시키도록 HD 10 을 8 cm 간격으로 배근하였다.

SC Column의 압축내력은 「강구조 한계상태 설계기준」 1）에서 제시하는 SRC 기둥의 압축내력 산정식을 적용하여， 합성기둥의 단면적을 강재의 단면적으로 고정시킨 상태에서 단면성능을 합성단면성능으로 환산하여 이를 철골기둥의 내 력식으로 적용하여 산정하는 것으로 다음과 같이 산정된다．

$$
\begin{aligned}
& P_{n}=A_{m} F_{c r} \\
& F_{c r}=\left(0.65^{\lambda_{c}^{2}}\right) F_{y m}\left(\lambda_{c} \leq 1.5\right) \\
& \quad=\left(\frac{0.85}{\lambda_{c}^{2}}\right) F_{y m} \quad\left(\lambda_{c}>1.5\right) \\
& \lambda_{c}=\frac{K L}{r_{m} \pi} \sqrt{\frac{F_{y m}}{E_{m}}} \\
& F_{y m}=F_{y}+0.6 f_{c}^{\prime} \frac{A_{c}}{A_{s}} \\
& E_{m}=E_{s}+0.2 E_{c} \frac{A_{c}}{A_{s}}
\end{aligned}
$$

P_{n} ：공칭압축강도 $(t f), A_{m}=A_{s}$ ：철골의 단면적 $\left(\mathrm{cm}^{2}\right)$ ， $F_{c r}$ ：공칭한계강도 $\left(t f / \mathrm{cm}^{2}\right), \quad \lambda_{c}$ ：기둥세장변수，$F_{y m}$ ：합성 항복강도 $\left(t f / \mathrm{cm}^{2}\right), \quad E_{m}$ ：합성탄성계수 $\left(t f / \mathrm{cm}^{2}\right), \quad r_{m}$ ：합성 단면2차반경 $(\mathrm{cm}), r_{m}=r_{s}$ ：합성단면폭의 0.3 배이상，r_{s} ：철 골의 단면2차반경 $(\mathrm{cm}), K$ 유효길이계수，L ：부재의 비지 지길이 $(\mathrm{cm}), F_{y}$ ：철골의 항복강도 $\left(t f / \mathrm{cm}^{2}\right), f_{c}^{\prime}$ ：콘크리트 의 압축강도 $\left(t f / \mathrm{cm}^{2}\right), A_{c}$ ：콘크리트의 단면적 $\left(\mathrm{cm}^{2}\right)$

그림 3．압축실험체 좌측 부터（C－COH0， $\mathrm{C}-\mathrm{C} 1 \mathrm{H} 0, \mathrm{C}-\mathrm{C} 1 \mathrm{H} 1)$

3.2 횜실험체

SC Column의 횜내력을 평가하기 위해서는 철골과 콘크 리트의 내력기여도에 대한 평가가 있어야 한다．따라서 횜실

험체는 〈표 1 〉과 같이 순철골 실험체 $(\mathrm{B}-\mathrm{COHO})$ 와 철골 내부 에 콘크리트를 채운 실험체 $(\mathrm{B}-\mathrm{C} 1 \mathrm{HO})$ 로 구성하였다．휨실험 에 사용된 철골은 일반적인 기둥 사이즈로 $\mathrm{H}-300 \times 300 \times$ 10×15 단면의 3.5 m 길이의 부재가 선택되었으며，「강구 조 한계상태 설계기준」1）에 따라 내부 콘크리트는 20 cm 간격의 $\phi 19$ 스터드 볼트로 일체화시켰다．

SC Column의 휨내력은 단면이 완전소성상태에 도달했을 때를 쳔대내력점으로 하여 산정하였다．${ }^{11,9)}$

그림 4．횜 실험체
위로부터（ $\mathrm{B}-\mathrm{COHO}, \mathrm{B}-\mathrm{C} 1 \mathrm{H} 0)$

3.3 전단실험체

전단 실험체 또한 동일한 방법으로 전단내력을 평가할 수 있도록 순철골 실험체 $(\mathrm{S}-\mathrm{COHO})$ ，철골 내부에 콘크리트를 채운 실험체 $(\mathrm{S}-\mathrm{ClH0})$ ，철골 플랜지에 후프를 용접한 후 나 부에 콘크리트를 채운 실험체 $(\mathrm{S}-\mathrm{C} 1 \mathrm{H} 1)$ 로 구성하였으며，횜 실험 부재와 동일한 $\mathrm{H}-300 \times 300 \times 10 \times 15$ 단면이 선택되었 고，길이는 전단파괴가 휨파괴에 선행하도록 1 m 가 선택되 었다．내부 콘크리트는 7.5 cm 간격의 $\phi 19$ 스터드 볼트로 일체화시켰고，후프는「강구조 한계상태 설계기준」 ${ }^{1)}$ 의 SRC 기둥의 구조제한을 만족하도록 HD 10 을 20 cm 의 간격으로 배근하였다．

그림 5．전단 실험체
위로 부터（C－COHO， $\mathrm{C}-\mathrm{C} 1 \mathrm{H} 0, \mathrm{C}-\mathrm{C} 1 \mathrm{H} 1$ ）

「강구조 한계상태 설계기준」 에서，합성부재의 전단강도 는 강재의 웨브에만 의존하며 강재의 전단강도 기준에 따라 산정하는 것으로 규정하고 있다1）．이는 통상적으로 부재의 전단내력 산정에 있어서 횝내력의 영향이 상대적으로 매우 크다는 점을 고려하고 또한 콘크리트의 전단저항에 대한 영 향을 정량적으로 평가하기 어렵다는 점 등으로 인해，전단력 에 대한 안전측의 설계방법으로 콘크리트 및 후프의 역할을 무시하여 설계를 단순화시키는 것을 목적으로 한다．그러나 SC Column의 전단내력 산정에는 이러한 콘크리트와 후프 에 의한 효과를 포함시켜 산정하였다．「콘크리트 구조설계 기준」3）에서 제시하는 일반 RC 보에 적용하는 콘크리트와 후프의 전단내력을 포함할 경우 SC Column의 전단내력， $V_{s c}$ 는 다음 식（1）과 같다 ${ }^{133}$ ．

$$
\begin{equation*}
V_{s c}=0.6 F_{y w} A_{w}+\frac{A_{v} f_{y} d}{s}+\frac{0.53 \sqrt{f_{c k}} b_{w} d}{1000} \tag{1}
\end{equation*}
$$

내부 콘크리트가 상•하부에서 철골 플렌지로 구속된 점을 고려하여 참고문헌（7）에서 제시하는 압축스트럿 메카니즘에 의한 내부 콘크리트의 전단내력을 포함할 경우 SC Column 의 전단내력，$V_{s c}$ 는（2）식과 같이 되어，내부 콘크리트 부 분의 전단내력이 약 10 배정도 크게 나타난다．

$$
\begin{equation*}
V_{s c}=0.6 F_{y w} A_{w}+\frac{A_{v} f_{y} d}{s}+\frac{5.43 \sqrt{f_{c k}} b_{w} d}{1000} \tag{2}
\end{equation*}
$$

식 $(1) \sim(2)$ 에서 F_{w} ：웨브의 항복강도 $\left(t f / \mathrm{cm}^{2}\right), A_{w}$ ：웨 브의 면적 $\left(t f / \mathrm{cm}^{2}\right), A_{v}$ ：철근의 항복강도 $\left(t f / \mathrm{cm}^{2}\right), f_{y}$ ：철 근의 항복강도 $\left(\mathrm{tf} / \mathrm{cm}^{2}\right), d$ ：유효깊이 $(\mathrm{cm}), \mathrm{s}$ ：후프간격 (cm) ， $f_{c k}$ ：콘크리트 강도 $\left(\mathrm{kg} / \mathrm{cm}^{2}\right), b_{w}$ ：부재의 폭 (cm)
＜표 1＞실험체 개요

$\begin{aligned} & \text { 실힘 } \\ & \text { 종류 } \end{aligned}$	철골	실험체 명	$\begin{aligned} & \text { 콘크리트 } \\ & \text { 유•무 } \end{aligned}$	Hoop 간격	스터드 간겨	실험체 길이
$\begin{aligned} & \text { 압축 } \\ & \text { 실험 } \end{aligned}$	$\begin{gathered} \mathrm{H}-125 \times 12 \\ 5 \times 6.5 \times 9 \end{gathered}$	$\mathrm{C}-\mathrm{COHO}$	\times	\times	\times	37.5 cm
		$\mathrm{C}-\mathrm{ClH} 0$	\bigcirc	\times	x	37.5 cm
		C－C1H1	0	8 cm	x	37.5 cm
$\begin{aligned} & \text { 횜 } \\ & \text { 실험 } \end{aligned}$	$\begin{gathered} \mathrm{H}-300 \times 300 \\ \times 10 \times 15 \end{gathered}$	B－COH0	\times	\times	\times	3.5 m
		B－C1H0	\bigcirc	\times	20 cm	3.5 m
전단 실험	$\begin{gathered} \mathrm{H}-300 \times 300 \\ \times 10 \times 15 \end{gathered}$	S－COH0	\times	\times	\times	1 m
		S－ClH0	\bigcirc	\times	7.5 cm	1 m
		S－C1H1	\bigcirc	20 cm	7.5 cm	$1 m$

3.4 재료의 물성

콘크리트 공시체 및 철근 인장시험편은 각각 3 개，철골 인 장시험편은 두께별 3 개씩 재료실험을 실시혰고，철골과 철근 시험편은 양면에 1 개씩 각각 2 개，공시체는 4 면에 1 개씩 각 각 4 개의 스트레인 게이지（strain gage）를 부착하여 얻은 변형율을 평균하여 구한 융력－변형 곡선으로부터 각 재료의 물섬을 구했고，그 결과는 〈표 2〉와 같다．
＜표》 재료의 물성

구분	재질	실험값（ $\mathrm{kgf} / \mathrm{cm}^{2}$ ）	
$\begin{gathered} \mathrm{H} 125 \times 125 \\ \times 6.5 \times 9 \end{gathered}$	SS 400	항복강도（ F_{y} ）	3.158
		탄성계수（ E_{s} ）	2，050，604
		인장강도（ F_{u} ）	4，671
$\begin{gathered} \mathrm{H} 300 \times 300 \\ \times 10 \times 15 \end{gathered}$	SS 400	항복강도（ F_{y} ）	3，051
		탄성계수（ E_{c} ）	2，107，552
		인장강도（ F_{u} ）	4，508
철근	SD 40	항복강도（ F_{y} ）	4，023
		탄성계수（ E_{5} ）	1，972，350
		인장강도（ F_{u} ）	5，506
큰크리트		압축강도（ $f_{c k}$ ）	295
		탄성계수（ E_{r} ）	249，251

4．실험결과 및 분석

4.1 압축 실험

4．1．1 가력방법 및 측정방법

200 ton 용량의 U．T．M을 사용하여 H형강과 콘크리트면 이 동시에 재하되도록 하여 단조압축가력하였다．파괴거동을 분석하기 위하여，부재의 축방향 변위와 철골과 콘크리트의 변형도를 측정하였다．

축방향 변위의 측정에는 스트레인게이지식 변위계를 사용 하였으며，철골과 콘크리트의 변형도 측정에는 스트레인 게이 지롤 사용하였으며，실험체 중앙부의 각 면에 3 개씩의 스트 레인 게이지를 부착하여 이들의 변형도를 결과분석에 반영했 다．가력장치와 측정위치는 〈그림 6〉，〈그림 7）과 같다．

그립 6．압축 실험체 축정장치의 부착위치

그림 7．압축실험 가력장치 및 축정위치

4．1．2 파괴거동 분석
순철골 실험체 $(\mathrm{C}-\mathrm{COH})$ ）는 철골의 항복까지는 거동에 큰 변화가 없었다．항복 이후에는 실험체가 37.5 cm 인 단주인 관계로 내력저하가 없이 축방향 변위만 증가하다가 철골이 변형역 경화 구간（Strain Hardening）으로 들어서면서 다시 내력이 상숭한 후 플랜지와 웨브에서의 국부좌굴 발생으로 내력이 저하되면서 최종적인 파괴에 이르렀다．
콘크리트와 철골만으로 이루어진 실험체 $(\mathrm{C}-\mathrm{C} 1 \mathrm{H} 0)$ 는 초 기에 콘크리트와 철골의 접합면을 따라 수직으로 미세 균열 이 발생하였고，하중이 증가함에 따라 이 균열은 더욱 진전되 었으며 콘크리트 면에서도 미세 균열이 발생되어 균열폭이 확대되어 나갔고，최종적으로 콘크리트에 압괴가 발생되었을 때 철골의 항복이 거의 동시에 일어났다．콘크리트 압괴로 콘 크리트가 부담하던 축력이 철골에 집중되어 실험체의 내력은 항복이후 급격히 감소하였고，이후 철골이 변형역 경화 구간 으로 들어서면서 다시 내력이 상승한 후 플렌지와 웨브의 국 부좌굴로 최종적인 파괴에 이르렀다．
플랜지면에 후프를 용접하고 콘크리트를 채운 실험체 （ $\mathrm{C}-\mathrm{ClH} 1$ ）는 초기에 콘크리트와 철골의 접합면을 따라 수 직으로 미세 균열이 발생하였고 또한 용접된 후프라인을 따 라 미세 균열이 발생되었다．하중이 증가함에 따라 이 균열은

그립 8．압축실험체 파괴형상 $(\mathrm{C}-\mathrm{C} 1 \mathrm{H} 1, \mathrm{C}-\mathrm{C} 1 \mathrm{H} 0, \mathrm{C}-\mathrm{COH} 0)$

더욱 진전되어 콘크리트 면으로 확대되어 갔으며，최종적으로 콘크리트의 파괴와 철골의 항복이 발생한 이후에는 내력이 감소하지 않고 완만히 상승한 후 철골의 국부좌굴로 최종적 인 파기에 이르렸다．후프를 용접한 $\mathrm{C}-\mathrm{C} 1 \mathrm{H} 1$ 실험체의 플랜 지에서 발생한 국부좌굴 형상은 $\mathrm{C}-\mathrm{ClHO}$ 실험체에서 발생한 형태와는 달리 〈그림 8〉에서 보이듯이 플랜지에 용접된 상－ 하의 후프를 지점으로 해서 이 지점들 사이에서 외부로 휘어 지는 형태를 띠었다．

4．1．3 결과 및 분석

SC Column의 압축실험 결과로 나온 하중축방향 변위 곡선이 〈그림 9〉에 나타나 있고，압축 실험체에 대한 이론값 과 실험값을 〈표 3 〉에서 비교하였다．

그림 9．압축 실험체의 하중 축방향 변위 곡선

순철골 실험체 $(\mathrm{C}-\mathrm{COH})$ 의 항복내력은 이론값과 거의 일 치 하였다．항복 이후 철골의 변형 경화의 영향으로 내력이 증가하여 최대내력은 항복내력 보다 약 17.4% 크게 나욨다． 이 변형역 경화 구간이 존재하는 이유는 실험체가 좌굴의 영 향을 거의 받지 않는 단주이기 때문이다．
$\mathrm{C}-\mathrm{C} 1 \mathrm{HO}$ 실험체의 항복내력은 이론값과 거의 일치하였으 나，항복 직후 내력이 항복내력의 약 86.8% 까지 급격히 감 소했고，이후 완만하게 내력이 상승한 후 다시 감소하였다． 이는 항복시의 콘크리트 압괴로 콘크리트가 분담하던 하중이 철골에 집중되면서 철골이 과도한 하중을 받아 급격히 내력 이 감소한 이후，철골이 변형역 경화 구간으로 들어가면서 다 시 내력이 상승하였기 때문이다．항복 이후 구간에서의 쳐대 내력은 항복내력의 약 98.2% 로 오히려 항복내력 보다 작게 나왔다．이는 콘크리트 압괴 이전까지는 콘크리트와 철골이 함께 압축하중에 저항했으나 콘크리트 압괴 이후에는 콘크리 트가 압축하중에 저항하지 못하고 철골만이 압축하중에 저항 하기 때문으로，변형역 경화 구간에서 철골의 부담하중이 항 복시의 철골의 부담하중 보다 증가하였다고는 하나 콘크리트

와 함께 저항하는 실험체의 항복하중 보다는 작기 때문이다．
$\mathrm{C}-\mathrm{C1H1}$ 실험체의 항복내력은 이론값 보다 약 7.9% 크 게 나왔고，후프를 용접하지 않은 $\mathrm{C}-\mathrm{ClHO}$ 실험체 보다 약 5.1% 크게 나와 후프의 내부 콘크리트 구속으로 인한 내부 콘크리트의 압축내력상승의 효과로 인해 실험체의 항복내력 이 약 5.1% 증가되었다는 것을 알 수 있다．항복 이후 실험 체의 내력이 $\mathrm{C}-\mathrm{ClHO}$ 와는 달리 감소하지 않고 항복내력의 약 19.2% 까지 증가하였다．이는 후프에 의한 내부 콘크리 트 구속의 효과로 실험체의 항복 이후에도 콘크리트와 철골 이 함께 압축하중에 저항하기 때문인 것으로 판단된다．

표 3．압축 실험체의 이론값과 실험값의 비교

실험체	$\begin{gathered} P_{n} \\ \text { (ton) } \end{gathered}$	$\begin{gathered} P_{y} \\ \text { (ton) } \end{gathered}$	$\begin{gathered} P_{\text {max }} \\ (\text { ton }) \end{gathered}$	$\begin{gathered} P_{y} \\ / P_{n} \end{gathered}$	순철골에 대한 내력증가	
					항복내력	최대내력
$\mathrm{C}-\mathrm{COHO}$	94.8	95.42	112.02	1.007	－	－
$\mathrm{C}-\mathrm{C} 1 \mathrm{H} 0$	117.1	120.34	120.34	1.028	1.261	1.074
$\mathrm{C}-\mathrm{C} 1 \mathrm{H} 1$	117.1	126.34	150.59	1.079	1.324	1.344

P_{n} ：「강구조 한계상태 설계기준」 에 의한 실험체의 내력 P_{y} ：실험결과에 의한 실험체의 항복내력
$P_{\text {max }}$ ：실험결과에 의한 실험체의 최대내력

〈그림 9〉과〈표 3〉에서 「강구조 한계상태 설계기준」 의 SRC 기둥의 내력식을 적용한 이론값과 각 실험체의 항복내 력은 거의 일치하였으나．후프를 용접하지 않은 $\mathrm{C}-\mathrm{C1HO}$ 실 험체의 경우 항복 이후 급격한 내력저하가 발생해서 SC Column 시스템으로 적합하지 않다고 푠단되며，후프를 용접 한 $\mathrm{C}-\mathrm{ClH1}$ 실험체는 순 철골 실험체에 비해 항복내력이 32.4% ，최대내력이 34.4% 증가하여 SC Column이 H 형 강의 내부에 콘크리트를 채움으로 해서 기둥의 압축내력을 상당히 증가시킨다는 것을 알 수 있다．

Tremblay et al（1998）은 플레이트로 용접하여 만든 H^{-} 헝강 부재에 원형 철근으로 내부 콘크리트를 구속하여 만든 SC Column의 압축 실험을 통해 압축 내력식을 다음 식（3） 과 같이 제안하였다．${ }^{10)}$

$$
\begin{align*}
& P_{u, p r e d}=0.85 A_{c} f_{c}+A_{s e} F_{y}+A_{y} f_{y r}^{\prime} \tag{3}\\
& A_{s e}=\left(d-2 t+4 b_{e}\right) t \tag{4}\\
& \frac{b_{e}}{b}=\frac{0.6}{\lambda_{p}} \leq 1.0 \tag{5}\\
& \lambda_{p}=\frac{b}{t} \sqrt{\frac{12\left(1-\nu^{2}\right) F_{y}}{\pi^{2} E k}} \tag{6}
\end{align*}
$$

$$
\begin{equation*}
k=\frac{4}{(s / b)^{2}}+\frac{15}{\pi^{4}}(s / b)^{2}+\frac{20}{3 \pi^{2}}(2-3 \nu) \tag{7}
\end{equation*}
$$

식（3）～（7）에서 A_{c} 는 콘크리트 면적，$A_{s e}$ 는 국부 좌굴 에 대한 철골의 유효 넓이，A_{r} 과 $f_{y r}{ }^{\prime}$ 은 재축 방향 보강 철근의 면적과 항복 강도，b_{e} 는 플렌지 하나의 총 유효 폭， λ_{p} 는 플랜지의 세장비．그리고 k 는 원형철근의 간격，s 와 b 에 따라 달라지는 플레이트 좌굴 계수이다．

또한 Trembly et al（2000）는 폭이 600 mm 기둥의 실 험 결과값에 잘 부합시키기 위해 식（5）를 다음과 같이 수정 하떠 제안하였다．10）

$$
\begin{equation*}
\frac{b_{e}}{b}=\left(1+\lambda_{p}^{2 n}\right)^{-\frac{1}{n}} \tag{8}
\end{equation*}
$$

여기서 $n=1$ 이다．
〈표 4〉에 Tremblay et al．의 제안식（1998，2000）과 실혁값을 비교하였다．Tremblay et al．（1998）은 내부 콘크 리트를 구속하는 합성 기둥에 관한 식이므로，실험체 $\mathrm{C}-\mathrm{ClH1}$ 실험체 내력값과 유사한 값을 가지고 있음을 알 수 있다．두 식 모두 국내의 「강구조 한계 상태 설계 기준」 보 다는 큰 값을 가지고 있어， SC 합성 기둥을 국내 기준에 맞 추어 압축재로 설계하면 안전측으로 설계할 수 있음을 알 수 있다．
＜표 4＞실험값과 Tremblay et al．식（1998，2000）과 비교

실험체	$\mathrm{C}-\mathrm{COH}$		$\mathrm{C}-\mathrm{C} 1 \mathrm{H} 0$		$\mathrm{C}-\mathrm{C} 1 \mathrm{H} 1$	
	tonf	오차（\％）	tonf	오차（\％）	tonf	오차（\％）
실험값	95.42	-	120.34	-	126.34	-
국내 기준	94.80	0.6	117.10	2.7	117.10	7.3
Tremblay et al．（1998）	93.00	2.5	124.60	3.5	124.60	1.4
Tremblay et al．（2000）	92.10	3.5	123.70	2.8	123.70	2.1

4.2 횜 실험

4．2．1 가력 방법 및 측정 방법

200ton Actuator를 사용하여 횝모멘트가 일정한 구간이 생기도록 실험체 중앙부에서 좌우로 50 cm 위치에서 2점 가 력을 하였다．Actuator의 제어방법은 실험체가 항복하기 전 구간과 항복 후의 구간으로 나누어 하중제어와 변위제어를 적용하였다．실험체가 탄성인 구간에서는 하중제어를 하였으 며，부재의 항복하중의 80% 에 도달한 시점부터는 변위제어

로 가력하였다．가력방법 및 가력장치는 〈그림 10〉과〈그림 11〉，측정위치는 〈그림 12〉와〈그림 13）에 나타내었다．

그림 10．횜실험 가력계획도

그림 11．횜실헙 기력장치

그림 12．횜실험체 측정장치의 부착위치

그림 13．횜실험체 측정위치
4.2 .2 퐈괴거동 분석

순철골 실험체인 $\mathrm{B}-\mathrm{COH} 0$ 실험체의 파괴는 항복 이후 횡 좌굴에 의해 발생되었다． SC Column 실험체인 $\mathrm{B}-\mathrm{ClHO}$ 의

（위－전면，아래－후면）
그림 14． $\mathrm{B}-\mathrm{C} 1 \mathrm{HO}$ 실헙체 균열형상

（a）실헙 전의 형상

（b）실험 후의 형상
그림 15． $\mathrm{B}-\mathrm{COHO}$ 실험체 실험 전•후의 형상

균열형상은 〈그림 14〉에 전면과 후면으로 나타내었다．실 험체는 초기균열이 보의 중앙부와 가력점 부근에서 가력하중 이 30 ton 될 때 발생했으며，이후 하중이 증가함에 따라 보 중앙부 및 가력점 부근에서 균열이 진전되었고 다수의 균열 이 발생되었다．70ton 이후에 뼈른 속도로 증가하다가 최종 적으로 상부에서 콘크리트의 압괴와 탈락에 의해 파괴에 이 르렀다．
순철골 실험체인 $\mathrm{B}-\mathrm{COHO}$ 실혐체의 파괴가 황좌굴에 의 해 발생되었지만， SC Column 실험체인 $\mathrm{B}-\mathrm{C} 1 \mathrm{H} 0$ 실험체는 정상적으로 횜에 의해 파괴가 발생되었다．따라서 철골 내부 에 채워진 콘크리트가 철골의 횡좌굴 저항을 개선시킴을 알 수 있다．〈그림 15 〉，〈그림 16 〉에 각 실험체의 실험 전과 실 험 후의 파괴형상을 비교하였다．

（a）실험 전의 형상

（b）실험 후의 형상
그림 16． $\mathrm{B}-\mathrm{C} 1 \mathrm{HO}$ 실험체 실험 전•후의 형상

4．2．2 결과 및 분석

순 철골 실험체인 $\mathrm{B}-\mathrm{COHO}$ 실험체는 횡좌굴에 의한 파괴 가 발생되었기 때문에，「강구조 한계상태 설계기준」 에서 제 시하는 횡좌굴에 의해 지배되는 부재의 횜내력 산정식을 적 용하여 실험체의 내력을 계산하였다．이렇게 계산된 이론값과 실험에 의한 실험체의 최대내력을 〈그림 17〉과〈표 5〉에 나 타내었다．
$\mathrm{B}-\mathrm{COHO}$ 실험체의 이론값과 최대내력 값은 거의 일치하였 다． SC Column 실혐체인 $\mathrm{B}-\mathrm{ClH1}$ 실험체의 횜내력은 철골과 콘크리트가 완전 합성작용을 하여 일체거동을 한다는 가정하에 서，단면의 완전소성응력 분포 상태로부터 계산된 이론값과 실 험에 의한 최대내력은 약 19.8% 의 오차를 보이면서 실험값이 더 크게 나왔다．이는 $\mathrm{B}-\mathrm{ClHO}$ 실험체의 내부 콘크리트가 상－ 하부에서 철골 플랜지로 구속되어 있어 콘크리트의 압괴가 갑 작스럽게 발생하지 않았다기 때문인 것으로 판단된다．

표 5．횝 실험체의 이론값과 실험값 비교

시험체	이론값 （ton $\cdot \mathrm{m}$ ）	실험값 （ton $\cdot \mathrm{m}$ ）	실험값／ 이론값
$\mathrm{B}-\mathrm{C} 0 \mathrm{H} 0$	44.7	42.57	0.952
$\mathrm{~B}-\mathrm{C} 1 \mathrm{H0}$	47.83	57.29	1.198

그림 17．횜 실험체의 모멘트－중앙부 처짐 곡선

〈그림 17）과 〈표 5〉에 나타난 바와 같이 SC Column 실 험체의 훤내력이 이론값 보다 19.8% 높게 나와 이론값으로 산정한 「강구조 한계상태 설계기준」 에서 제시하는 횜내력 산정식을 만족시키고，내부 콘크리트로 인한 철골의 황좌굴 저항능력의 항상을 확인할 수 있었다．

한편， SC Column 실험체인 $\mathrm{B}-\mathrm{ClH0}$ 실험체의 양 단부 면의 상부 플랜지 연단에서 아래로 5 cm 높이에 있는 철골 웨브와 콘크리트에 각각 1 개씩의 스트레인게이지식 변위계를 설치하여 각각의 횡방향 변위를 측정할 수 있도록 했다．여기 서 얻은 콘크리트와 철골의 변위의 차이로 콘크리트와 철골 의 슬립 양을 계산하여 B－C1H0 실험체의 합성거동을 규명 했다．〈표 6〉와 〈그림 18〉에서 각각의 결과를 나타내었다．

표 6．slip양 비교

위치	slip 양 (mm)	
	항복시	최대내력시
좌측	0.13	0.38
우축	0.2	0.95

그림 18．하중 slip 곡선
〈표 6〉과〈그림 18〉에서 나타낸 바와 같이 $\mathrm{B}-\mathrm{C} 1 \mathrm{H} 0$ 실험 체의 slip 양은 실험체의 항복시 0.2 mm 이하，최대내력시 0.95 mm 이하로 나타났으며，변형도 그래프로부터 판단하 였을 때 $\mathrm{B}-\mathrm{C} 1 \mathrm{H} 0$ 실험체는 스터드 볼트와 철골과 콘크리트 부착면에서의 부착응력으로 충분한 합성거동을 했다고 판단 된다．

4.3 전단실험

4．3．1 가력 방법 및 측정방법

200ton Actuator로 중앙부 1점 가력을 하였다．Actuator 의 제어 방법은 횜실험과 동일한 방법으로 실험체가 항복하 기 전 구간과 항복 후의 구간으로 나누어 하중제어와 변위제 어를 적용하였으며 실험체가 탄성인 구간에서는 하중제어를 하였으며，부재 항복하중의 80% 에 도달한 시점부터는 변위 제어로 가력하였다．가력방법 및 가력장치는 〈그림 19）과〈그 림 20〉，측정위치는 〈그림 21〉와 〈그림 22〉에 나타내었다．

그림 19．전단실험 가력계획도

그림 20．전단실험 가력장치

그림 21．전단실헙체 측정장치의 부착위치

4.3 .2 파괴거동 분석

순철골 실험체인 $\mathrm{S}-\mathrm{COHO}$ 실험체의 파괴는 중앙부 압축부 분 웨브의 좌굴에 의해 발생되었다．SC Column 실험체인 $\mathrm{S}-\mathrm{C} 1 \mathrm{H} 0$ 와 $\mathrm{S}-\mathrm{ClH1}$ 실험체의 균열형상은 〈그림 23〉와〈그 림 24〉에 전면과 후면으로 나타내었다．실험체는 초기균열이 가력하중 40 ton 부근에서 실험체 중앙부에서 양쪽으로 $10 \mathrm{~cm} \sim 20 \mathrm{~cm}$ 부근에서 발생했으며 하중이 증가할수록 조금 씩 진전되었고， $100 \mathrm{ton} \sim 120 \mathrm{ton}$ 에서 가력점에서 지점을 잇 는 경사방향으로 가는 경사균열이 발생하였고 이후 조금씩 진전되는 형태을 보였으나，가력하중 180 ton 에 이르기까지 표괴가 발생되지 않았고，가력장치의 가력하중의 한계로 180 ton 에서 실험을 종료하였다．

그림 22．전단실혐체 측정위치

（a）전면의 균열형상

（b）후면의 균열형상
그림 23．S－C1H0 실헙체 균열형상

（a）전면의 균열형상

（b）후면의 균열형상
그립 24．S－C1H1 실험체 균열형상
SC Column 실험체인 $\mathrm{S}-\mathrm{ClH} 0$ 와 $\mathrm{S}-\mathrm{ClH1}$ 실험체의 콘 크리트가 일반 RC 보에 적용하는 전단내력을 훨씬 초과하는 하중에도 균열의 발생이나 진전이 미미한 것은 콘크리트가 상•하부에서 철골의 플랜지로 구속되어 있기 때문에 콘크리 트의 전단강도가 상승한 것으로 판단된다．〈그림 25 〉에 각 실험체의 실험 후 퐈괴형상을 나타내었다．

4．3．3 결과 및 분석

「강구조 한계상태 설계기준」에서 합성부재의 전단강도로 제시하는 강재의 웨브에 의한 전단내력과 「콘크리트 구조설 계기준」 에서 제시하는 일반 RC 보의 전단내력 산정에 적용

（a） $\mathrm{S}-\mathrm{COHO}$

（b） $\mathrm{S}-\mathrm{C} 1 \mathrm{HO}$

（3） $\mathrm{S}-\mathrm{C} 1 \mathrm{H} 1$
위로부터（S－COH0，S－C1H0，S－C1H1）
그림 25．전단 실험체의 파괴형상
되는 콘크리트와 후프의 전단강도를 포함한 내력값을 예상값 으로 하여 실험결과와 함께 〈그림 26〉에 나타내었다．

그립 26．전단 실혐체의 전단력 중앙부 처짐 곡선
순 철골 실험체인 $\mathrm{S}-\mathrm{COHO}$ 실험체는 중앙부 압축부분 웨 브의 좌굴로 최대 내력에 도달하였고 예상값과 거의 일치하 였다． SC Column 실험체인 $\mathrm{S}-\mathrm{C} 1 \mathrm{H} 0, \mathrm{~S}-\mathrm{C} 1 \mathrm{H} 1$ 실험체는〈표 7 〉에서와 같이 예상값을 훨씬 초과하는 하중에서도 파괴 가 발생되지 않아 SC Column의 전단내력은 「강구조 한계

상태 설계기준」1）및 「콘크리트 구조설계기준」3）에서 제 시하는 내력값을 충분히 만족하는 것으로 보인다．

SC Column 실험체가 예상값을 초과하는 하중에도 파괴 되지 않은 것은 내부 콘크리트가 상•하부에서 철골의 플랜 지로 구속되어 있기 때문에 콘크리트의 전단내력이 상숭했기 때문인 것으로 판단된다．참고문헌（7）에서는 RC 기둥 －Steel 보 접합부에서 철골 플랜지와 플랜지 사이의 Face Bearing Plate로 구속된 내부 콘크리트 부분의 전단강도로 $\left.5.43 \sqrt{f_{c}^{\prime}} b_{w} d 7\right)$ 로 제시하였다．SC Column의 내부 콘 크리트가 이와 거의 돟일한 조건하에 있으므로 이 식을 SC Column의 내부 콘크리트 전단강도로 적용할 수 있다고 판 단된다．이렇게 계산된 이론값，예상값，철골 웨브만이 전단 력을 부담하게 하는 기준값 그리고 실험결과에 의한 최대내 력값을 〈표 7〉에서 비교하였다．

표 7．전단 실험체의 기준값，예상값，이론값과 실험값의 비교

실험체세	기준값 （ton）	예상값 （ton）	이론값 （ton）	실험값 （ton）	실험값 （예상값	이론값 ／긴값	이론값 ／예상값
$\mathrm{S}-\mathrm{COH0}$	58.6	58.6	58.6	55.38	0.945	1.0	1.0
$\mathrm{~S}-\mathrm{ClH0}$	58.6	65.8	132.2	90.7	1.378	2.248	2.009
$\mathrm{~S}-\mathrm{ClH1}$	58.6	73.5	140	90.4	1.230	2.389	1.905

〈표 7〉에서 나타나둣이 참고문헌（7）에 제시된 이론값에 의한 SC Column의 전단내력은 기준에서 제시하는 철골 웨 브의 전단내력의 2 배 이상이 되어 「강구조 한계상태 설계기 준」 에서는 콘크리트의 전단강도를 과소평가하고 있는 것으 로 판단되지만 이론값에 대한 실험적 검증이 이루어지지 않 았기 때문에 이에 대한 검증이 추후 진행되어야 할 것이다．

5．결론

Steel Concrete Column의 구조성능을 규명하기 위한 압 축，횝，전단실험을 통해서 다음과 같은 결론을 얻었다．
（1）압축 실험결과 SC Column 실험체인 $\mathrm{C}-\mathrm{C} 1 \mathrm{H} 0$ ， $\mathrm{C}-\mathrm{C} 1 \mathrm{H1}$ 의 항복내력은 「강구조 한계상태 설계기준」 의 SRC 기둥의 내력식을 적용한 값 보다 각각 $2.8 \%, 7.9 \%$ 크게 나와 이 식으로 SC Column의 압축 내력을 평가할 수 있다고 판단된다．후프에 의한 내부 콘크리트의 구속 효과로 항복내력이 약 5% 증 가하였다．항복이후 후프가 없는 $\mathrm{C}-\mathrm{ClHO}$ 실험체는 급격한 내력저하를 보인 반면，후프가 있는 $\mathrm{C}-\mathrm{C} 1 \mathrm{H} 1$ 실험체는 내력저하 없이 큰 변형에도 연성거동을 하였 다． $\mathrm{C}-\mathrm{ClH1}$ 실험체의 순 철골 실험체에 대한 내력

증가는 항복내력 약 32.4% ，최대내력 34.4% 로 나 타나 내부 콘크리트의 내력 기여도가 상당히 크다는 것을 알 수 있었다．
（2）SC Column 실험체의 압축내력 실험결과를 Tremblay et al．제안식 $(1998,2000)$ 과 비교할 때 거의 일치하 였다．그러나 이 제안식은 제한된 수의 실험 자료에 근거한 것으로서， SC Column을 설계할 때에는 보다 안전측예 있는 국내 「강구조 한계상태 설계기준」 을 사용하는 것이 바람직하다．
（3）휨 실험결과 SC Column의 내부콘크리트에 의한 철 골의 횡좌굴 저항능력의 향상을 확인할 수 있었다． SC Column 실험체는 쳐대내력이 「강구조 한계상태 설계기준」 에서 제시하는 단면의 소성응력 분포로부터 계산된 횜내력 보다 19.8% 크게 나와，이 기준에서 제시하는 내력식으로 SC Column의 횜내력을 평가할 수 있다는 것을 알 수 있었다．
（4）전단 실험결과 SC Column의 전단내력은 기준에서 제시하는 값보다 큰 것으로 나타났다．이는 내부 콘크 리트가 철골 플랜지로 상•하부에서 구속되어 내부 콘 크리트의 전단내력이 증가하기 때문으로 「강구조 한 계상태 설계기준」 에서는 콘크리트의 전단강도를 과소 평가하고 있는 것으로 판단되고，참고문헌（7）의 검증 이 추후 연구에서 논의되어야 할 것이다．

감사의 글

Steel－Concrete Column 연구에 협조해 주신（주）포항제철 및（주）대우건설 기술연구소 관계자 여러분께 감사드립니다．

참고문헌

1．대한건축학희＂강구조 한계상태 설계기준 및 해설＂，기문 당． 1998
2．포항산업과학연구원，한국강구조학회＂콘크리트충전 강관 구조 설계 및 시공지침＂， 2001
3．대한건축학회，한국콘크리트 학회＂콘크리트 구조 설계기 준＂，기문당， 1999
4．鈴木海郎，小河利行，深澤 陸，內山政彦＂埑樎曲げせん钐
日本建築學會構造釆論文集，第483号，P．165－172， 1996． 5
5．DD ENV 1994 part1－1＂Eurocode 4－Design of composite steel and concrete structures，part 1－1 General rules and rules for buildings＂， 1994
6. DD ENV 1994 part1-2 "Eurocode 4-Design of composite steel and concrete structures, part 1-2 Design rules - Structural fire design", 1994
7. ASCE Task Committee on Design Criteria for composite structures "Guidelines for Design of joints between steel beams and reinforced concrete column". ASCE, V 120, 1994, 8. p. 123 $0 \sim$ p. 1357
8. Vincent. R, "Design and Application of partially encased non-compact composite columns for highrise buildings", proc. composite constructions IV, engineering foundation, Banff, Canada, 2000
9. Deric J. Oehler, Mark A Bradford, "Composite steel and concrete structural members-fundmental behavior" Pergamon, 1995
10. Robert Tremblay, Thierry Chicoine, Bruno Massicotte, James M. Ricles, Le-Wu Lu, "Behavior and Strength of Partially Encased Composite Columns with Built Shapes", Journal of Structural Engineering, ASCE, V. 128, 2002. 3. p. $279 \sim$ p. 288
(접수일자: 2002년 8월 2일)

[^0]: 1) 정회원, 고려대학교 건축공학과 석사
 2) 정회원, 고려대학교 건축긍학과 박사과정
 3) 정회원, 부천대학 건축과 조교수, 공학박사, 건축구조기술사
 4) 정회원, 고려대학교 건축공학과 교수. 공학박사
