DOI QR코드

DOI QR Code

Rescuing Developing Thymocytes from Death by Neglect

  • Chung, Hee-Kyoung (School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University) ;
  • Choi, Young-I. (School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University) ;
  • Ko, Myung-Gon (School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University) ;
  • Seong, Rho-H. (School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University)
  • Published : 2002.01.31

Abstract

The major function of the thymus is to eliminate developing thymocytes that are potentially useless or autoreactive, and select only those that bear functional T cell antigen receptors (TCRs) through fastidious screening. It is believed that glucocorticoids (GCs) are at least in part responsible for cell death during death by neglect. In this review, we will mainly cover the topic of the GC-induced apoptosis of developing thymocytes. We will also discuss how thymocytes that are fated to die by GCs can be rescued from GC-induced apoptosis in. response to a variety of signals with antagonizing properties for GC receptor (GR) signaling. Currently, a lot of evidence supports the notion that the decision is made as a result of the integration of the multiple signal transduction networks that are triggered by GR, TCR, and Notch. A few candidate molecules at the converging point of these multiple signaling pathyways will be discussed. We will particularly describe the role of the SRG3 protein as a potent modulator of GC-induced apoptosis in the crosstalk.

Keywords

References

  1. Adcock, I. M., Nasuhari, Y. and Bames, P. J (1998) Role of CBP in glucocorticoidinduced gene repression. Biochem. Soc. Trans. 26, S255. https://doi.org/10.1042/bst026s255
  2. Alam, S. M., Travers, P. J., Wung, J. L., Nasholds, W., Redpath, S., Jameson, S. C. and Gascoigne, N. R. (1996) T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616-620. https://doi.org/10.1038/381616a0
  3. Alam, S. M., Davies, G. M., Lin, C. M., Zal, T., Nasholds, W., Jameson, S. C., Hogquist, K A., Gascoigne, N. R. and Travers, P. J. (1999) Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity 10, 227-237. https://doi.org/10.1016/S1074-7613(00)80023-0
  4. Alberola-Ila, J., Forbush, K A., Seger, R, Krebs, E. G. and Perlmutter, R M. (1995) Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620-623. https://doi.org/10.1038/373620a0
  5. Alberola-Ila, J., Hogquist, K A., Swan, K A., Bevan, M. J. and Perlmutter, R. M. (1996) Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9-18. https://doi.org/10.1084/jem.184.1.9
  6. Amsen, D. and Kruisbeek, A. M. (1998) Thymocyte selection: not by TCR alone. Immunol. Rev. 165, 209-229. https://doi.org/10.1111/j.1600-065X.1998.tb01241.x
  7. Ashwell, J. D., King, L. B. and Vacchio, M. S. (1996) Cross-talk between the T cell antigen receptor and the glucocorticoid receptor regulates thymocyte development. Stem Cells 14, 490- 500. https://doi.org/10.1002/stem.140490
  8. Ashwell, J. D., Lu, E. W. and Vacchio, M. S. (2000) Glucocorticoids in T cell development and function. Annu. Rev. Immunol. 18, 309-345. https://doi.org/10.1146/annurev.immunol.18.1.309
  9. Auphan, N., DiDonato, J. A., Rosette, C., Helmberg, A. and Karin, M. (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270, 286-290. https://doi.org/10.1126/science.270.5234.286
  10. Baus, E., Andris, E., Dubois, P. M., Urbain, J. and Leo, O. (1996) Dexamethasone inhibits the early steps of antigen receptor signaling in activated T lymphocytes. J. Immunol. 156, 4555- 4561.
  11. Beato, M. (1991) Transcriptional control by nuclear receptors. FASEB J. 5, 2044-2051. https://doi.org/10.1096/fasebj.5.7.2010057
  12. Beato, M., Herrlich, P. and Schutz, G. (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83, 851-857. https://doi.org/10.1016/0092-8674(95)90201-5
  13. Brown, R. D. and Strott, C. A. (1971) Plasma deoxycorticosterone in man. J Clin. Endocrinol. Metab. 32, 744-750. https://doi.org/10.1210/jcem-32-6-744
  14. Choi, Y. I., Jeon, S. H., Jang, J., Han, S., Kim, J. K, Chung, H., Lee, H. W., Chung, H. Y., Park, S. D. and Seong, R. H. (2001) Notchl confers a resistance to glucocorticoid-induced apoptosis on developing thymocytes by down-regulating SRG3 expression. Proc. Natl. Acad. Sci. USA 98, 10267-10272. https://doi.org/10.1073/pnas.181076198
  15. Cidlowski, J. A., King, K. L., Evans-Storms, R. B., Montague, J. W., Bortner, C. D. and Hughes, F. M. (1996) The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog. Horm. Res. 51, 457-490.
  16. Cifone, M. G., Migliorati, G., Parroni, R, Marchetti, C., Millimaggi, D., Santoni, A. and Riccardi, C. (1999) Dexamethasone-induced thymocyte apoptosis: apoptotic signal involves the sequential activation of phosphoinositide-specific phospholipase C, acidic sphingomyelinase, and caspases. Blood 93, 2282-2296.
  17. Cohen, J. J. and Duke, R. C. (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol. 132, 38-42.
  18. Cohen, J. J. (1992) Glucocorticoid-induced apoptosis in the thymus. Sem. lmmunol. 4,363-369.
  19. Collingwood, T. N., Urnov, F. D. and Wolffe, A. P. (1999) Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol. 23, 255-275. https://doi.org/10.1677/jme.0.0230255
  20. Davis, M. M., McHeyzer-Williams, M. and Chien, Y. H. (1995) Tcell receptor V-region usage and antigen specificity. The cytochrome c model system. Ann. N. Y. Acad. Sci. 756, 1-11. https://doi.org/10.1111/j.1749-6632.1995.tb44477.x
  21. Defios, M. L., He, Y. W., Ojala, E. W. and Bevan, M. J. (1998) Correlating notch signaling with thymocyte maturation. Immunity 9, 777-786. https://doi.org/10.1016/S1074-7613(00)80643-3
  22. Delgado, P., Fernandez, E., Dave, V., Kappes, D. and Alarcon, B. (2000) CD3deita couples T-cell receptor signalling to ERK activation and thymocyte positive selection. Nature 406, 426- 430. https://doi.org/10.1038/35019102
  23. Dong, C., Yang, D. D., Wysk, M., Whitmarsh, A. J., Davis, R. J. and Flavell, R. A. (1998) Defective T cell differentiation in the absence of Jnk1. Science 282, 2092-2095. https://doi.org/10.1126/science.282.5396.2092
  24. Dong, C., Yang, D. D., Tournier, C., Whitmarsh, A. J., Xu, J., Davis, R. J. and Flavell, R. A. (2000) JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91-94. https://doi.org/10.1038/35011091
  25. Dougherty, T. and White, A. (1943) Effect of pituitary adrenotropic hormone on lymphoid tissue. Proc. Natl. Acad. Sci. USA 53, 132-133.
  26. Dower, N. A., Stang, S. L., Bottorff, D. A., Ebinu, J. O., Dickie, P., Ostergaard, H. L. and Stone, J. C. (2000) RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol. 1,317-321. https://doi.org/10.1038/79766
  27. Duckett, C. S., Li, F., Wang, Y., Tomaselli, K. J., Thompson, C. B. and Annstrong, R. C. (1998) Human IAP-like proteinregulates programmed cell death downstream of Bel-xL and cytochrome c. Mol. Cell. Biol. 18, 608-615. https://doi.org/10.1128/MCB.18.1.608
  28. Fernandez, A., Kiefer, J., Fosdick, L. and McConkey, D. J. (1995) Oxygen radical production and thiol depletion are required for Ca(2+ )-mediated endogenous endonuclease activation in apoptotic thymocytes. J. Immunol. 155, 5133-5139.
  29. Fryer, C. J. and Archer, T. K. (1998) Chromatin remodelling by the glucocorticoid receptor requires the BRGI complex. Nature 393,88-91. https://doi.org/10.1038/30032
  30. Gao, Y., Kinoshita, Y., Hato, F., Tominaga, K. and Tsuji, Y. (1996) Suppression of glucocorticoid-induced thymocyte apoptosis by co-culture with thymic epithelial cells. Cell. Mol. BioI. 42, 227- 234.
  31. Gong, Q., Cheng, A. M., Akk, A. M., Alberola-Ila, J., Gong, G., Pawson, T. and Chan, A. C. (2001) Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nature Immunol. 2, 29-36. https://doi.org/10.1038/83134
  32. Grillot, D. A., Merino, R. and Nunez, G. (1995) Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J. Exp. Med. 182, 1973-1983. https://doi.org/10.1084/jem.182.6.1973
  33. Grossman, Z. and Singer, A. (1996) Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. Proc. Natl. Acad. Sci. USA 93, 14747-14752. https://doi.org/10.1073/pnas.93.25.14747
  34. Gruber, J., Sgonc, R., Hu, Y. H., Beug, H. and Wick, G. (1994) Thymocyte apoptosis induced by elevated endogenous corticosterone levels. Eur. J. Immunol. 24, 1115-1121. https://doi.org/10.1002/eji.1830240516
  35. Hakem, R., Hakem, A., Duncan, G. S., Henderson, J. T., Woo, M., Soengas, M. S., Elia, A., de la Pompa, J. L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S. A., Lowe, S. w., Penninger, J. M. and Mak, T. W. (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339-352. https://doi.org/10.1016/S0092-8674(00)81477-4
  36. Han, S., Choi, H., Ko, M. G., Choi, Y. I., Sohn, D. H., Kim, J. K., Shin, D., Chung, H., Lee, H. W., Kim, J. B., Park, S. D. and Seong, R. H. (2001) Peripheral T cells become sensitive to glucocorticoid- and stress-induced apoptosis in transgenic mice overexpressing SRG3. J. Immunol. 167, 805-810. https://doi.org/10.4049/jimmunol.167.2.805
  37. HasseIjian, R. P., Aster, J. C., Davi, F., Weinberg, D. S. and Sklar, J. (1996) Modulated expression of notchl during thymocyte development. Blood 88, 970-976.
  38. Helmberg, A., Auphan, N., Caelles, C. and Karin, M. (1995) Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J. 14,452-460.
  39. Henning, S. J. (1978) Plasma concentrations of total and free corticosterone during development in the rat. Am. J. Physiol 235, 451-456.
  40. Hockenbery, D. M., Zutter, M., Hickey, W., Nahm, M. and Korsmeyer, S. J. (1991) BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl. Acad. Sci. USA 88, 6961-6965. https://doi.org/10.1073/pnas.88.16.6961
  41. Hugo, P., Boyd, R. L., Waanders, G. A. and Scollay, R. (1991) CD4+CD8+CD3high thymocytes appear transiently during ontogeny: evidence from phenotypic and functional studies. Eur. J. lmmunol. 21, 2655-2660. https://doi.org/10.1002/eji.1830211103
  42. Imai, E., Miner, J. N., Mitchell, J. A., Yamamoto, K. R. and Granner, D. K. (1993) Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J. BioI. Chem. 268, 5353-5356.
  43. Ito, K., Barnes, P. J. and Adcock, I. M. (2000) Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-lbeta-induced histone H4 acetylation on lysines 8 and 12. Mol. Cell. Biol. 20, 6891-6903. https://doi.org/10.1128/MCB.20.18.6891-6903.2000
  44. Ito, K., Jazrawi, E., Cosio, B., Barnes, P.J. and Adcock, I. M. (2001) p65-activated histone acetyltransferase activity is repressed by glucocorticoids: mifepristone fails to recruit HDAC2 to the p65-HAT complex. J. Biol. Chem. 276, 30208- 30215. https://doi.org/10.1074/jbc.M103604200
  45. Iwata, M., Hanaoka, S. and Sato, K. (1991) Rescue of thymocytes and T cell hybridomas from glucocorticoid-induced apoptosis by stimulation via the T cell receptor/CD3 complex: a possible in vitro model for positive selection of the T cell repertoire. Eur. J. Immunol. 21, 643-648. https://doi.org/10.1002/eji.1830210316
  46. Iwata, M., Iseki, R., Sato, K., Tozawa, Y. and Ohoka, Y. (1994) Involvement of protein kinase C-epsilon in glucocorticoidinduced apoptosis in thymocytes. Int. lmmunol. 6, 431-438. https://doi.org/10.1093/intimm/6.3.431
  47. Jaffe, H. (1924a) The influence of the supradrenal gland on the thymus I. Regeneration of the thymus following double supradrenalectomy in the rat. J. Exp. Med. 40, 325-341. https://doi.org/10.1084/jem.40.3.325
  48. Jaffe, H. (1924b) The influence of the supradrenal gland on the thymus Ill. Stimulation of the growth of the thymus gland following double supradrenalectomy in young rats. J. Exp. Med. 40, 753-759. https://doi.org/10.1084/jem.40.6.753
  49. Jamieson, C. A. and Yamamoto, K. R. (2000) Crosstalk pathway for inhibition of glucocorticoid-induced apoptosis by T cell receptor signaling. Proc. Natl. Acad. Sci. USA 97, 7319-7324. https://doi.org/10.1073/pnas.97.13.7319
  50. Jehn, B. M., Bielke, W., Pear, W. S. and Osborne, B. A. (1999) Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635-638.
  51. Jenkinson, E. J., Pamell, S., Shuttleworth, J., Owen, J. J. and Anderson, G. (1999) Specialized ability of thymic epithelial cells to mediate positive selection does not require expression of the steroidogenic enzyme p450scc. J. Immunol. 163, 5781- 5785.
  52. Jeon, S. H., Kang, M. G., Kim, Y. H., Jin, Y. H., Lee, C., Chung, H. Y., Kwon, H., Park, S. D. and Seong, R. H. (1997) A new mouse gene, SRG3, related to the SWI3 of Saccharomyces cerevisiae, is required for apoptosis induced by glucocorticoids in a thymoma cell line. J. Exp. Med. 185, 1827-1836. https://doi.org/10.1084/jem.185.10.1827
  53. Jonat, C., Rahmsdorf, H. J., Park, K. K., Cato, A. C., Gebel, S., Ponta, H. and Herrlich, P. (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62, 1189-1204. https://doi.org/10.1016/0092-8674(90)90395-U
  54. Kaye, J., Vasquez, N. J. and Hedrick, S. M. (1992) Involvement of the same region of the T cell antigen receptor in thymic selection and foreign peptide recognition. J. lmmuno. 148, 3342-3353.
  55. King, L. B., Vacchio, M. S., Dixon, K., Hunziker, R., Margulies, D. H. and Ashwell, J. D. (1995) A targeted glucocorticoid receptor antisense transgene increases thymocyte apoptosis and alters thymocyte development. Immunity 3, 647-656. https://doi.org/10.1016/1074-7613(95)90135-3
  56. Kino, T., Nordeen, S. K. and Chrousos, G. P. (1999) Conditional modulation of glucocorticoid receptor activities by CREB-binding protein (CBP) and p300. J. Steroid Biochem. Mol. BioI. 70, 15-25. https://doi.org/10.1016/S0960-0760(99)00100-4
  57. Kuida, K., Haydar, T. F., Kuan, C. Y., Gu, Y., Taya, C., Karasuyama, H., Su, M. S., Rakic, P. and Flavell, R. A. (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325-337. https://doi.org/10.1016/S0092-8674(00)81476-2
  58. Lechner, O., Wiegers, G. J., Oliveira-Dos-Santos, A J., Dietrich, H., Recheis, H., Waterman, M., Boyd, R and Wick, G. (2000) Glucocorticoid production in the murine thymus. Eur.J. Immunol. 30, 337-346. https://doi.org/10.1002/1521-4141(200002)30:2<337::AID-IMMU337>3.0.CO;2-L
  59. Linette, G. P., Grusby, M. J., Hedrick, S. M., Hansen, T. H., Glimcher, L. H. and Korsmeyer, S. J. (1994) Bcl-2 is upregulated at the CD4+ CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197-205. https://doi.org/10.1016/1074-7613(94)90098-1
  60. Liu, Z. G., Smith, S. W., McLaughlin, K. A., Schwartz, L. M. and Osborne, B. A. (1994) Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367, 281-284. https://doi.org/10.1038/367281a0
  61. Love, P. E., Lee, J. and Shores, E. W. (2000) Critical relationship between TCR signaling potential and TCR affinity during thymocyte selection. J. Immunol. 165, 3080-3087. https://doi.org/10.4049/jimmunol.165.6.3080
  62. Lu, F. W., Yasutomo, K., Goodman, G. B., McHeyzer-Williams, L. J., McHeyzer-Williams, M. G., Germain, R N. and Ashwell, J. D. (2000) Thymocyte resistance to glucocorticoids leads to antigen-specific unresponsiveness due to "holes" in the T cell repertoire. Immunity 12, 183-192. https://doi.org/10.1016/S1074-7613(00)80171-5
  63. Ma, A., Pena, J. C., Chang, B., Margosian, E., Davidson, L., Alt, F. W. and Thompson, C. B. (1995) Bclx regulates the survival of double-positive thymocytes. Proc. Natl. Acad. Sci. USA 92, 4763-4767. https://doi.org/10.1073/pnas.92.11.4763
  64. Mann, C. L., Hughes, F. M., Jr. and Cidlowski, J. A. (2000) Delineation of the signaling pathways involved in glucocorticoid-induced and spontaneous apoptosis of rat thymocytes. Endocrinology 141, 528-538. https://doi.org/10.1210/en.141.2.528
  65. Mann, C. L. and Cidlowski, J. A. (2001) Glucocorticoids regulate plasma membrane potential during rat thymocyte apoptosis in vivo and in vitro. Endocrinology 142, 421-429. https://doi.org/10.1210/en.142.1.421
  66. Mariathasan, S., Jones, R. G. and Ohashi, P. S. (1999) Signals involved in thymocyte positive and negative selection. Semin. Irnmunol. 11, 263-272. https://doi.org/10.1006/smim.1999.0182
  67. Matsuno, K., Eastman, D., Mitsiades, T., Quinn, A.M., Carcanciu, M. L., Ordentlich, P., Kadesch, T. and Artavanis-Tsakonas, S. (1998) Human deltex is a conserved regulator of Notch signalling. Nature Genet. 19, 74-78. https://doi.org/10.1038/ng0598-74
  68. McConkey, D. J., Nicotera, P., Hartzell, P., Bellomo, G., Wyllie, A. H. and Orrenius, S. (1989) Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch Biochem Biophys. 269, 365-370. https://doi.org/10.1016/0003-9861(89)90119-7
  69. McKay, L. I. and Cidlowski, J. A. (2000) CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol. Endocrinol. 14, 1222-1234. https://doi.org/10.1210/me.14.8.1222
  70. Morale, M. C., Batticane, N., Gallo, F., Barden, N. and Marchetti, B. (1995) Disruption of hypothalarnic-pituitary-adrenocortical system in transgenic mice expressing type II glucocorticoid receptor antisense ribonucleic acid permanently impairs T cell function: effects on T cell trafficking and T cell responsiveness during postnatal development. Endocrinology 136, 3949-3960. https://doi.org/10.1210/en.136.9.3949
  71. Murphy, B. E. and Diez d' Aux, R C. (1972) Steroid levels in the human fetus: cortisol and cortisone. J. Clin. Endocrinol. Metab. 35, 678-683. https://doi.org/10.1210/jcem-35-5-678
  72. Nakayama, K., Negishi, I., Kuida, K., Shinkai, Y., Louie, M.C., Fields, L. E., Lucas, P. J., Stewart, V. and Alt, F. W. (1993) Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261, 1584-1588. https://doi.org/10.1126/science.8372353
  73. O'Shea, C.C., Crompton, T., Rosewell, I. R., Hayday, A. C. and Owen, M. J. (1996) Raf regulates positive selection. Eur. J. Immunol. 26, 2350-2355. https://doi.org/10.1002/eji.1830261012
  74. Ostlund Farrants, A. K., Blomquist, P., Kwon, H. and Wrange, O. (1997) Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. BioI. 17, 895-905. https://doi.org/10.1128/MCB.17.2.895
  75. Oswald, F., Liptay, S., Adler, G. and Schmid, R. M. (1998) NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol. Cell. Biol. 18, 2077-2088. https://doi.org/10.1128/MCB.18.4.2077
  76. Pages, G., Guerin, S., Grall, D., Bonino, F., Smith, A., Anjuere, F., Auberger, P. and Pouyssegur, J. (1999) Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374-1377. https://doi.org/10.1126/science.286.5443.1374
  77. Pazirandeh, A., Xue, Y., Rafter, I., Sjovall, J., JondaI, M. and Okret, S. (1999) Paracrine glucocorticoid activity produced by mouse thymic epithelial cells. FASEB J 13, 893-901. https://doi.org/10.1096/fasebj.13.8.893
  78. Philips, A., Maira, M., Mullick, A., Chamberland, M., Lesage, S., Hugo, P. and Drouin, J. (1997) Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol. Cell. Biol. 17, 5952-5959. https://doi.org/10.1128/MCB.17.10.5952
  79. Plesko, M. M., Hargrove, J. L., Granner, D. K. and Chalkley, R. (1983) Inhibition by sodium butyrate of enzyme induction by glucocorticoids and dibutyryl cyclic AMP. A role for the rapid form of histone acetylation.J. Biol. Chem. 258, 13738-13744.
  80. Pui, J. C., Allman, D., Xu, L., DeRocco, S., Kamell, F. G., Bakkour, S., Lee, J. Y., Kadesch, T., Hardy, R. R., Aster, J. C. and Pear, W. S. (1999) Notchl expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299-308. https://doi.org/10.1016/S1074-7613(00)80105-3
  81. Purton, J. F., Boyd, R. L., Cole, T.J. and Godfrey, D. I. (2000) Intrathymic T cell development and selection proceeds normally in the absence of glucocorticoid receptor signaling. Immunity 13, 179-186. https://doi.org/10.1016/S1074-7613(00)00018-2
  82. Ray, A. and Prefontaine, K. E. (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 91, 752-756. https://doi.org/10.1073/pnas.91.2.752
  83. Reichardt, H. M., Kaestner, K. H., Tuckermann, J., Kretz, O., Wessely, O., Bock, R., Gass, P., Schmid, W., Herrlich, P., Angel, P. and Schutz, G. (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531-541. https://doi.org/10.1016/S0092-8674(00)81183-6
  84. Rincon, M., Whitmarsh, A., Yang, D. D., Weiss, L., Derijard, B., Jayaraj, P., Davis, R J. and Flavell, R. A. (1998) The JNK pathway regulates the In vivo deletion of immature CD4(+)CD8(+) thymocytes. J. Exp. Med. 188, 1817-1830. https://doi.org/10.1084/jem.188.10.1817
  85. Robey, E., Chang, D., ltano, A, Cado, D., Alexander, H., Lans, D., Weinmaster, G. and Salmon, P. (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483-492. https://doi.org/10.1016/S0092-8674(00)81368-9
  86. Sabapathy, K., Hu, Y., Kallunki, T., Schreiber, M., David, J. P., Jochum, W., Wagner, E. F. and Karin, M. (1999) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116-125. https://doi.org/10.1016/S0960-9822(99)80065-7
  87. Sabapathy, K., Kallunki, T., David, J. P., Graef, I., Karin, M. and Wagner, E. F. (2001) c-Jun NH2-terrninal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med. 193, 317-328. https://doi.org/10.1084/jem.193.3.317
  88. Sacedon, R., Vicente, A., Varas, A., Morale, M. C., Barden, N., Marchetti, B. and Zapata, A. G. (1999) Partial blockade of T-cell differentiation during ontogeny and marked alterations of the thymic microenvironment in transgenic mice with impaired glucocorticoid receptor function. J. Neuroimmunol. 98, 157- 167. https://doi.org/10.1016/S0165-5728(99)00091-0
  89. Savu, L., Zouaghi, H. and Nunez, E. A. (1985) Serum inflammatory responses of transcortin binding activities and of total and free corticosterone and progesterone levels in developing rats: a kinetic approach. Int. J Tissue React. 7, 443- 448.
  90. Scheinman, R I., Cogswell, P. C., Lofquist, A. K and Baldwin, A. S., Jr. (1995) Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270, 283-286. https://doi.org/10.1126/science.270.5234.283
  91. Sebzda, E., Mariathasan, S., Ohteki, T., Jones, R., Bachmann, M. F. and Ohashi, P. S. (1999) Selection of the T cell repertoire. Ann. Rev. Immunol. 17,829-874. https://doi.org/10.1146/annurev.immunol.17.1.829
  92. Selye, H. (1936) Thymus and adrenals in the response of the organism to injuries and intoxication. Br. J. Exp. Pathol. 17, 234-248.
  93. Sentman, C L., Shutter, J. R., Hockenbery, D., Kanagawa, O. and Korsmeyer, S. J. (1991) bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879-888. https://doi.org/10.1016/0092-8674(91)90361-2
  94. Siegel, R M., Katsumata, M., Miyashita, T., Louie, D. C., Greene, M. I. and Reed, J. C (1992) Inhibition of thymocyte apoptosis and negative antigenic selection in bcl-2 transgenic mice. Proc. Natl. Acad. Sci. USA 89, 7003-7007. https://doi.org/10.1073/pnas.89.15.7003
  95. Simpson, E. R. and Waterman, M. R. (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu. Rev. Physiol. 50, 427-440. https://doi.org/10.1146/annurev.ph.50.030188.002235
  96. Stocklin, E., Wissler, M., Gouilleux, F. and Groner, B. (1996) Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383, 726-728. https://doi.org/10.1038/383726a0
  97. Swan, K. A., Alberola-Ila, J., Gross, J. A., Appleby, M. W., Forbush, K. A., Thomas, J. F. and Perlmutter, R. M. (1995) Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J. 14, 276-285.
  98. Tamura, K., Taniguchi, Y., Minoguchi, S., Sakai, T., Tun, T., Furukawa, T. and Honjo, T. (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr. Biol. 5, 1416- 1423. https://doi.org/10.1016/S0960-9822(95)00279-X
  99. Thompson, E. (1999) Mechanisms of T-cell apoptosis induced by glucocoriticoids. Trends Endocrinol. Metab. 10, 353-358. https://doi.org/10.1016/S1043-2760(99)00187-3
  100. Tibbetts, T. A., DeMayo, F., Rich, S., Conneely, O. M. and O'Malley, B. W. (1999) Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility. Proc. Natl. Acad. Sci. USA 96, 12021-12026. https://doi.org/10.1073/pnas.96.21.12021
  101. Vacchio, M. S., Papadopoulos, V. and Ashwell, J. D. (1994) Steroid production in the thymus: implications for thymocyte selection. J Exp. Med. 179, 1835-1846. https://doi.org/10.1084/jem.179.6.1835
  102. Vacchio, M. S. and Ashwell, J. D. (1997) Thymus-derived glucocorticoids regulate antigen-specific positive selection. J Exp. Med. 185, 2033-2038. https://doi.org/10.1084/jem.185.11.2033
  103. Vacchio, M. S., Lee, J. Y. and Ashwell, J. D. (1999) Thymusderived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation.J. Immunol. 163, 1327-1333.
  104. Vacchio, M. S. and Ashwell, J. D. (2000) Glucocorticoids and thymocyte development. Semin. Immunol. 12, 475-485. https://doi.org/10.1006/smim.2000.0265
  105. Van Laethem, F., Baus, E., Smyth, L. A., Andris, F., Bex, F., Urbain, J., Kioussis, D. and Leo, O. (2001) Glucocorticoids attenuate T cell receptor signaling. J. Exp. Med. 193, 803-814. https://doi.org/10.1084/jem.193.7.803
  106. Wallberg, A. E., Flinn, E. M., Gustafsson, J. A. and Wright, A. P. (2000) Recruitment of chromatin remodelling factors during gene activation via the glucocorticoid receptor N-terminal domain. Biochem Soc. Trans. 28, 410-414. https://doi.org/10.1042/0300-5127:0280410
  107. Weih, F., Ryseck, R. P., Chen, L. and Bravo, R. (1996) Apoptosis of nur77/N10-transgenic thymocytes involves the Fas/Fas ligand pathway. Proc. Natl. Acad. Sci. USA 93, 5533-5538. https://doi.org/10.1073/pnas.93.11.5533
  108. Weiss, L., Whitmarsh, A. J., Yang, D. D., Rincon, M., Davis, R. J. and Flavell, R. A. (2000) Regulation of c-Jun NH(2)-terminal kinase (Jnk) gene expression during T cell activation. J Exp. Med. 191, 139-146. https://doi.org/10.1084/jem.191.1.139
  109. Werlen, G., Hausmann, B. and Palmer, E. (2000) A motif in the alphabeta T-cell receptor controls positive selection by modulating ERK activity. Nature 406, 422-426. https://doi.org/10.1038/35019094
  110. Williams, O. and Brady, H.J. (2001) The role of molecules that mediate apoptosis in T-cell selection. Trends Immunol. 22, 107- 111. https://doi.org/10.1016/S1471-4906(00)01797-X
  111. Wyllie, A. H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-556. https://doi.org/10.1038/284555a0
  112. Wyllie, A. H., Morris, R. G., Smith, A. L. and Dunlop, D. (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 142, 67-77. https://doi.org/10.1002/path.1711420112
  113. Yang-Yen, H. F., Chambard, J. C., Sun, Y. L., Smeal, T., Schmidt, T. J., Drouin, J. and Karin, M. (1990) Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62, 1205-1215. https://doi.org/10.1016/0092-8674(90)90396-V
  114. Yoshida, H., Kong, Y. Y., Yoshida, R., Elia, A. J., Hakem, A., Hakem, R., Penninger, J. M. and Mak, T. W. (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94,739-750. https://doi.org/10.1016/S0092-8674(00)81733-X
  115. Zacharchuk, C.M., Mercep, M., Chakraborti, P. K., Simons, S. S., Jr. and Ashwell, J. D. (1990) Programmed T lymphocyte death. Cell activation- and steroid-induced pathways are mutually antagonistic. J. Immunol. 145, 4037-4045.
  116. Zhang, Z., Jones, S., Hagood, J. S., Fuentes, N. L. and Fuller, G. M. (1997) STAT3 acts as a co-activator of glucocorticoid receptor signaling. J. Biol. Chem. 272, 30607-30610. https://doi.org/10.1074/jbc.272.49.30607

Cited by

  1. Learning to be tolerant: how T cells keep out of trouble vol.265, pp.5, 2009, https://doi.org/10.1111/j.1365-2796.2009.02093.x
  2. Quantitative approach to lectin-based glycoprofiling of thymic tissues in the control- and the dexamethasone-treated mice vol.48, pp.3, 2016, https://doi.org/10.1016/j.tice.2016.03.010
  3. Targeted inactivation of the COP9 signalosome impairs multiple stagesof T cell development vol.205, pp.2, 2008, https://doi.org/10.1084/jem.20070725