DOI QR코드

DOI QR Code

Two Flexible Loops in Subtilisin-like Thermophilic Protease, Thermicin, from Thermoanaerobacter yonseiensis

  • Jang, Hyeung-Jin (Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University) ;
  • Lee, Chang-Hun (Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University) ;
  • Lee, Weon-Tae (Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University) ;
  • Kim, Yu-Sam (Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University)
  • Published : 2002.09.30

Abstract

A gene that encodes a thermostable protease, coined thermicin, has been isolated from Thermoanaerobacter yonseiensis that is expressed and characterized in E. coli.. In order to elucidate the molecular characteristics on thermostability of the enzyme, molecular modeling and mutagenesis technology were applied. In the modeling structure, the structural core, including the active site, was well conserved; whereas, the two loop regions were unique when compared to thermitase. The mutant enzyme with the small loop deleted (D190-I196), based on modeling structural information, showed identical enzyme activity. However, when the large loop was deleted (P233-P244), a little lower $K_m$ and even a lower kcat was found. This indicates that the large loop could influence catalytic activity. However, the unfolding temperature ($T_m$), which was determined by a differential-scanning calorimetry for the mutant enzyme deleted the small loop, was $96^{\circ}C$. This is $14^{\circ}C$ lower than that for the parent thermicin. These results suggest that the small loop may play a role in maintaining the proper folding of the enzyme at high temperatures, whereas the large loop might be related to catalysis.

Keywords

References

  1. Argos, P., Rosseman, M. G., Gsau, U. M., Zuber, H., Frank, G. and Tratschin, J. D. (1979) Thermal stability and protein structure. Biochemistry 18, 5698-5703. https://doi.org/10.1021/bi00592a028
  2. Bacon, D. J. and Anderson, W. F. (1988) A Fast Algorithm for Rendering Space-Filling Molecule Pictures. J. Mol. Graph. 6, 219-220
  3. Cao, W., Lu, J., Welch, S. G., Williams, R. A. and Barany, F. (1998) Cloning and thermostability of TaqI endonuclease isoschizomers from thermus species SM32 and Thermus filiformis TOKGA1. Biochem. J. 333, 425-431 https://doi.org/10.1042/bj3330425
  4. Chan, M. K., Mukund, S., Kletzin, A., Adams, M. W. W. and Rees, D. C. (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredozin oxidoreductase. Science 267. 1463-1469. https://doi.org/10.1126/science.7878465
  5. Daniel. R. M., Cowan, D. A., Morgan, H. W. and Curran, M. P. (1982) A correlation between protein thermostability and resistance to proteolysis. Biochem. J. 207, 641-644. https://doi.org/10.1042/bj2070641
  6. Day, M. W., Hsu, B. T., Joshu-Tor, L., Park, J., Zhou, Z. H., Adams, M. W. W. and Rees, D. C (1992) X-Ray crystal structure of the oxidized and reduced forms of the rubredoxin from the marine hyperthennophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1, 1494-1507. https://doi.org/10.1002/pro.5560011111
  7. Eijsink, V. G. H., Vriend, vanden Burg, G. B., vander Zee, J. R. and Venema, G. (1992) Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the N-terminal turn of $\alpha$-helices. Protein Eng. 5. 165-170. https://doi.org/10.1093/protein/5.2.165
  8. Eriksson. A. E., Baase, W. A., Zhang. X. J., Heinze, D. W., Blaber. M., Baldwin, E. P. and Matthews. B. W. (1992) Response of a protein structure to cavity creating mutations and its relation to the hydrophobic effect. Science 255, 178-183. https://doi.org/10.1126/science.1553543
  9. Fields, P. A. and Somero, G. N. (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenoid tlshes. Proc. Natl. Acad. Sci. USA 95, 11476-11481. https://doi.org/10.1073/pnas.95.19.11476
  10. Fierning, T. and Littlechild. J. (1997) Sequence and structural comparison of thermophilic phophoglycerate kinases with a mesophilic equivalent. Comp. Biochem. Physiol. 118A, 439-451.
  11. Imada, K., Sato. M., Tanaka, N., Katsube. Y., Matsuura, Y. and Oshima, T. (1991) Three-dimensional structure of a highly thermostable enzyme. 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 $\AA$ resolution. J. Mol. Biol. 222, 725-738. https://doi.org/10.1016/0022-2836(91)90508-4
  12. Kim. Y. K., Choi, I. G., Nam, W. and Yu, Y. G. (2000) Identitlcation of a mature form and Characterization of Thermostability of a Serine-type Protease from Aquifex pyrophilus. J. Biochem. Mol. Biol. 33, 493-498.
  13. Kim. S. Y., Hwang, K. Y., Kim, S. H., Sung, H. C., Han, Y. S. and Cho. Y. (1999) J. BioI. Chem. 274, 11761-11767. https://doi.org/10.1074/jbc.274.17.11761
  14. Kraulis, P. J. (1991) MOLSCRlPT: A Program to Produce Both Detailed and Schematic Plots of Protein Structures. J. Appl. Crystal. (1991) 24. 946-950. https://doi.org/10.1107/S0021889891004399
  15. Laskowski. R. A. MacArthur, M. W., Moss, D. S. and Thornton. J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crylstallogr. 26. 47-60. https://doi.org/10.1107/S0021889892008240
  16. Lim. W. A and Sauer, R. T. (1989) Alternative packing arrangements in the hydrophobic core of 1 repressor. Nature 339, 31-36. https://doi.org/10.1038/339031a0
  17. Matsumura, M., Becktel. W. J. and Matthews, B. W. (1988) Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of IIe 3. Nature 334, 406-410 https://doi.org/10.1038/334406a0
  18. Mitchinson. C. and Wells, J. A. (1989) Protein engineering of disultlde bonds in subtilisin BPN.. Biochemistry 28, 4807-4815. https://doi.org/10.1021/bi00437a043
  19. Nakamura, S., Tanaka, T., ada, R. Y. and Nakai, S. (1997) Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix. Protein Eng. 10, 1263-1269 https://doi.org/10.1093/protein/10.11.1263
  20. Panasik, N, Brenchley, J. E. and Farber, G. K. (2000) Distributions of structural features contributing to thennostability in mesophilic and thermophilic a/b barrel glycosyl hydrolyses. Biochim. Biophys. Acta 1543, 189-201. https://doi.org/10.1016/S0167-4838(00)00182-5
  21. Perutz, M. F. and Raidt, H. (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in hemoglobin A2. Nature 255. 256-259. https://doi.org/10.1038/255256a0
  22. Russell, R. J. M., Ferguson. J. M. C., Hough, D. W., Danson. M. J. and Taylor, G. L. (1997) The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiousus at 1.9 $\AA$ resolution. Biochemistry 36, 9983-9994. https://doi.org/10.1021/bi9705321
  23. Russell. R J. M., Gerike, U., Danson, M. J., Hough, D. W. and Taylor. G. L. (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6, 351-361. https://doi.org/10.1016/S0969-2126(98)00037-9
  24. Sali. A. and Blundell. T. L. (1993) Comparative protein mode ling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815. https://doi.org/10.1006/jmbi.1993.1626
  25. Sandberg, W. S. and Terwillinger, T. C. (1991) Influence of interior packing and hydrophobicity on the stability of a protein. Proc. Natl. Acad. Sci. USA 88, 1706-1710. https://doi.org/10.1073/pnas.88.5.1706
  26. Scandurra. R., Consalvi. V., Chiaraluce. R., Politi, L. and Engel P. C (1998) Protein thermostability in extremophiles. Biochimie 80. 933-941. https://doi.org/10.1016/S0300-9084(00)88890-2
  27. ShortIe, D. (1992) Mutational studies of protein structures and their stabilities. Q. Rev. Biophys. 25, 205-250. https://doi.org/10.1017/S0033583500004674
  28. Sippl, M. J. (1993) Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Compu.-Aided. Mol. Des. 7. 473-50 https://doi.org/10.1007/BF02337562
  29. Takagi, H., Hirai, K., Maeda, Y., Matsuzawa, H. and Nakamori, S. J. (2000) Engineering subtilisin E for enhanced stability and activity in polar organic solvents. J. Biochem. 127, 617-625. https://doi.org/10.1093/oxfordjournals.jbchem.a022649
  30. Takagi, H., Takahashi, T., Momose, H., Inouye, M., Maeda, Y., Matsuzawa. H. and Ohta, T. (1990) Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J. BioI. Chem. 265, 6874-6878.
  31. Teplyakov, A. V., Kuranova, I. P., Harutyunyan, E. H., Frommel, C. and Hohne, W. E. (1989) Crystal structure of thermitase from Thermoactinomyces vulgaris at 2.2 A resolution. FEBS Lett. 244, 208-212. https://doi.org/10.1016/0014-5793(89)81194-9
  32. Urfer, R. and Kirschner, K. (1992) The importance of surface loops for stabilizing an eightfold a/b barrel protein. Protein Sci. 1, 31-45. https://doi.org/10.1002/pro.5560010105
  33. Vogt, G., Woell, S. and Argos, P. (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269, 631-643. https://doi.org/10.1107/S0021889892008240
  34. Vriend, G. and Sander, C. (1993) Quality-Control of Protein Models-Directional Atomic Contact Analysis. J. Appl. Ctystallogr. 26, 47-60. https://doi.org/10.1107/S0021889892008240
  35. Wallon, G., Kryger, G., Lovett, S. T., Oshima. T., Ringe, D. and Petsko. G. A. (1997) Crystal structure of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thennophilus. J. Mol. Biol. 266, 1016-1031 https://doi.org/10.1006/jmbi.1996.0797
  36. Wells. J. A. and Powers. D. B. (1986) In vivo formation and stability of engineered disulfide bonds in subtilisin. J. Biol. Chem. 261, 6564-6570.
  37. Yip, K S., Still man, T. J., Britton, K L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., Engel, P. C., Pasquo, A., Chiaraluce, R. and Consalvi, V. (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures, Structure 3, 1147-1158, https://doi.org/10.1016/S0969-2126(01)00251-9
  38. Yutani, K., Ogasahara, K., Tsujita. T. and Sugino, Y. (1987) Dependence of conformational stability on hydrophobicity of the amino acid residues in a series of variant proteins substituted at a unique position of tryptophan synthase a subunit. Proc. Natl, Acad. Sci. USA 84, 4441-4444. https://doi.org/10.1073/pnas.84.13.4441
  39. Zavodszky. P., Kardos, J., Svingor. A. and Petsko, G. A. (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl. Acad. Sci, USA 95, 7406-7411. https://doi.org/10.1073/pnas.95.13.7406

Cited by

  1. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41 vol.89, pp.5, 2008, https://doi.org/10.1002/bip.20866
  2. Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution vol.24, pp.7, 2011, https://doi.org/10.1093/protein/gzr014
  3. Overexpression and characterization of thermostable serine protease in Escherichia coli encoded by the ORF TTE0824 from Thermoanaerobacter tengcongensis vol.11, pp.6, 2007, https://doi.org/10.1007/s00792-007-0103-0
  4. Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis vol.75, pp.1, 2007, https://doi.org/10.1007/s00253-006-0800-0
  5. For the Sequence YKGQ, the Turn and Extended Conformational Forms Are Separated by Small Barriers and the Turn Propensity Persists Even at High Temperatures: Implications for Protein Folding vol.116, pp.12, 2012, https://doi.org/10.1021/jp210227s