References
- Argos, P., Rosseman, M. G., Gsau, U. M., Zuber, H., Frank, G. and Tratschin, J. D. (1979) Thermal stability and protein structure. Biochemistry 18, 5698-5703. https://doi.org/10.1021/bi00592a028
- Bacon, D. J. and Anderson, W. F. (1988) A Fast Algorithm for Rendering Space-Filling Molecule Pictures. J. Mol. Graph. 6, 219-220
- Cao, W., Lu, J., Welch, S. G., Williams, R. A. and Barany, F. (1998) Cloning and thermostability of TaqI endonuclease isoschizomers from thermus species SM32 and Thermus filiformis TOKGA1. Biochem. J. 333, 425-431 https://doi.org/10.1042/bj3330425
- Chan, M. K., Mukund, S., Kletzin, A., Adams, M. W. W. and Rees, D. C. (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredozin oxidoreductase. Science 267. 1463-1469. https://doi.org/10.1126/science.7878465
- Daniel. R. M., Cowan, D. A., Morgan, H. W. and Curran, M. P. (1982) A correlation between protein thermostability and resistance to proteolysis. Biochem. J. 207, 641-644. https://doi.org/10.1042/bj2070641
- Day, M. W., Hsu, B. T., Joshu-Tor, L., Park, J., Zhou, Z. H., Adams, M. W. W. and Rees, D. C (1992) X-Ray crystal structure of the oxidized and reduced forms of the rubredoxin from the marine hyperthennophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1, 1494-1507. https://doi.org/10.1002/pro.5560011111
-
Eijsink, V. G. H., Vriend, vanden Burg, G. B., vander Zee, J. R. and Venema, G. (1992) Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the N-terminal turn of
$\alpha$ -helices. Protein Eng. 5. 165-170. https://doi.org/10.1093/protein/5.2.165 - Eriksson. A. E., Baase, W. A., Zhang. X. J., Heinze, D. W., Blaber. M., Baldwin, E. P. and Matthews. B. W. (1992) Response of a protein structure to cavity creating mutations and its relation to the hydrophobic effect. Science 255, 178-183. https://doi.org/10.1126/science.1553543
- Fields, P. A. and Somero, G. N. (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenoid tlshes. Proc. Natl. Acad. Sci. USA 95, 11476-11481. https://doi.org/10.1073/pnas.95.19.11476
- Fierning, T. and Littlechild. J. (1997) Sequence and structural comparison of thermophilic phophoglycerate kinases with a mesophilic equivalent. Comp. Biochem. Physiol. 118A, 439-451.
-
Imada, K., Sato. M., Tanaka, N., Katsube. Y., Matsuura, Y. and Oshima, T. (1991) Three-dimensional structure of a highly thermostable enzyme. 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2
$\AA$ resolution. J. Mol. Biol. 222, 725-738. https://doi.org/10.1016/0022-2836(91)90508-4 - Kim. Y. K., Choi, I. G., Nam, W. and Yu, Y. G. (2000) Identitlcation of a mature form and Characterization of Thermostability of a Serine-type Protease from Aquifex pyrophilus. J. Biochem. Mol. Biol. 33, 493-498.
- Kim. S. Y., Hwang, K. Y., Kim, S. H., Sung, H. C., Han, Y. S. and Cho. Y. (1999) J. BioI. Chem. 274, 11761-11767. https://doi.org/10.1074/jbc.274.17.11761
- Kraulis, P. J. (1991) MOLSCRlPT: A Program to Produce Both Detailed and Schematic Plots of Protein Structures. J. Appl. Crystal. (1991) 24. 946-950. https://doi.org/10.1107/S0021889891004399
- Laskowski. R. A. MacArthur, M. W., Moss, D. S. and Thornton. J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crylstallogr. 26. 47-60. https://doi.org/10.1107/S0021889892008240
- Lim. W. A and Sauer, R. T. (1989) Alternative packing arrangements in the hydrophobic core of 1 repressor. Nature 339, 31-36. https://doi.org/10.1038/339031a0
- Matsumura, M., Becktel. W. J. and Matthews, B. W. (1988) Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of IIe 3. Nature 334, 406-410 https://doi.org/10.1038/334406a0
- Mitchinson. C. and Wells, J. A. (1989) Protein engineering of disultlde bonds in subtilisin BPN.. Biochemistry 28, 4807-4815. https://doi.org/10.1021/bi00437a043
- Nakamura, S., Tanaka, T., ada, R. Y. and Nakai, S. (1997) Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix. Protein Eng. 10, 1263-1269 https://doi.org/10.1093/protein/10.11.1263
- Panasik, N, Brenchley, J. E. and Farber, G. K. (2000) Distributions of structural features contributing to thennostability in mesophilic and thermophilic a/b barrel glycosyl hydrolyses. Biochim. Biophys. Acta 1543, 189-201. https://doi.org/10.1016/S0167-4838(00)00182-5
- Perutz, M. F. and Raidt, H. (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in hemoglobin A2. Nature 255. 256-259. https://doi.org/10.1038/255256a0
-
Russell, R. J. M., Ferguson. J. M. C., Hough, D. W., Danson. M. J. and Taylor, G. L. (1997) The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiousus at 1.9
$\AA$ resolution. Biochemistry 36, 9983-9994. https://doi.org/10.1021/bi9705321 - Russell. R J. M., Gerike, U., Danson, M. J., Hough, D. W. and Taylor. G. L. (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6, 351-361. https://doi.org/10.1016/S0969-2126(98)00037-9
- Sali. A. and Blundell. T. L. (1993) Comparative protein mode ling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815. https://doi.org/10.1006/jmbi.1993.1626
- Sandberg, W. S. and Terwillinger, T. C. (1991) Influence of interior packing and hydrophobicity on the stability of a protein. Proc. Natl. Acad. Sci. USA 88, 1706-1710. https://doi.org/10.1073/pnas.88.5.1706
- Scandurra. R., Consalvi. V., Chiaraluce. R., Politi, L. and Engel P. C (1998) Protein thermostability in extremophiles. Biochimie 80. 933-941. https://doi.org/10.1016/S0300-9084(00)88890-2
- ShortIe, D. (1992) Mutational studies of protein structures and their stabilities. Q. Rev. Biophys. 25, 205-250. https://doi.org/10.1017/S0033583500004674
- Sippl, M. J. (1993) Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Compu.-Aided. Mol. Des. 7. 473-50 https://doi.org/10.1007/BF02337562
- Takagi, H., Hirai, K., Maeda, Y., Matsuzawa, H. and Nakamori, S. J. (2000) Engineering subtilisin E for enhanced stability and activity in polar organic solvents. J. Biochem. 127, 617-625. https://doi.org/10.1093/oxfordjournals.jbchem.a022649
- Takagi, H., Takahashi, T., Momose, H., Inouye, M., Maeda, Y., Matsuzawa. H. and Ohta, T. (1990) Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J. BioI. Chem. 265, 6874-6878.
- Teplyakov, A. V., Kuranova, I. P., Harutyunyan, E. H., Frommel, C. and Hohne, W. E. (1989) Crystal structure of thermitase from Thermoactinomyces vulgaris at 2.2 A resolution. FEBS Lett. 244, 208-212. https://doi.org/10.1016/0014-5793(89)81194-9
- Urfer, R. and Kirschner, K. (1992) The importance of surface loops for stabilizing an eightfold a/b barrel protein. Protein Sci. 1, 31-45. https://doi.org/10.1002/pro.5560010105
- Vogt, G., Woell, S. and Argos, P. (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269, 631-643. https://doi.org/10.1107/S0021889892008240
- Vriend, G. and Sander, C. (1993) Quality-Control of Protein Models-Directional Atomic Contact Analysis. J. Appl. Ctystallogr. 26, 47-60. https://doi.org/10.1107/S0021889892008240
- Wallon, G., Kryger, G., Lovett, S. T., Oshima. T., Ringe, D. and Petsko. G. A. (1997) Crystal structure of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thennophilus. J. Mol. Biol. 266, 1016-1031 https://doi.org/10.1006/jmbi.1996.0797
- Wells. J. A. and Powers. D. B. (1986) In vivo formation and stability of engineered disulfide bonds in subtilisin. J. Biol. Chem. 261, 6564-6570.
- Yip, K S., Still man, T. J., Britton, K L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., Engel, P. C., Pasquo, A., Chiaraluce, R. and Consalvi, V. (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures, Structure 3, 1147-1158, https://doi.org/10.1016/S0969-2126(01)00251-9
- Yutani, K., Ogasahara, K., Tsujita. T. and Sugino, Y. (1987) Dependence of conformational stability on hydrophobicity of the amino acid residues in a series of variant proteins substituted at a unique position of tryptophan synthase a subunit. Proc. Natl, Acad. Sci. USA 84, 4441-4444. https://doi.org/10.1073/pnas.84.13.4441
- Zavodszky. P., Kardos, J., Svingor. A. and Petsko, G. A. (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl. Acad. Sci, USA 95, 7406-7411. https://doi.org/10.1073/pnas.95.13.7406
Cited by
- Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41 vol.89, pp.5, 2008, https://doi.org/10.1002/bip.20866
- Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution vol.24, pp.7, 2011, https://doi.org/10.1093/protein/gzr014
- Overexpression and characterization of thermostable serine protease in Escherichia coli encoded by the ORF TTE0824 from Thermoanaerobacter tengcongensis vol.11, pp.6, 2007, https://doi.org/10.1007/s00792-007-0103-0
- Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis vol.75, pp.1, 2007, https://doi.org/10.1007/s00253-006-0800-0
- For the Sequence YKGQ, the Turn and Extended Conformational Forms Are Separated by Small Barriers and the Turn Propensity Persists Even at High Temperatures: Implications for Protein Folding vol.116, pp.12, 2012, https://doi.org/10.1021/jp210227s