DOI QR코드

DOI QR Code

Biochemical Compositions of Follicular Fluid and the Effects of Culture Conditions on the In Vitro Development of Pig Oocytes

  • Huang, Wei-Tung (Graduate Institute of Animal Science, National Chung Hsing University) ;
  • Lu, She-Ghi (Graduate Institute of Animal Science, National Chung Hsing University) ;
  • Tang, Pin-Chi (Graduate Institute of Animal Science, National Chung Hsing University) ;
  • Wu, Shinn-Chih (Department of Genetics and Physiology) ;
  • Cheng, San-Pao (Graduate Institute of Animal Science, National Chung Hsing University) ;
  • Ju, Jyh-Cherng (Graduate Institute of Animal Science, National Chung Hsing University)
  • Received : 2001.11.19
  • Accepted : 2002.04.24
  • Published : 2002.10.01

Abstract

The aims of this study were, firstly, to analyze the biochemical compositions of serum and follicular fluid (FF) from prepubertal gilts after PMSG (1,000 IU) treatment. The concentrations of total proteins, lipids, cholesterol, glucose and sex hormones (progesterone, $P_4$; estradiol-$17{\beta}$, $E_2$; testosterone, T) were measured. Secondary, the effects of porcine FF (pFF) addition (40% and 100%) in IVM media and different culture conditions [Exp. 1: mBMOC-2+20% porcine serum (PS), fresh IVM medium, filtered IVMconditioned medium, or rabbit oviducts; Exp. 2: mBMOC-2+20%PS or stepwise medium replacement procedures (SMRP) cocultured with or without cumulus cells] on the in vitro development (IVD) of porcine oocytes were also examined. Results showed that no significant differences were found in total protein levels between serum and pFF from different sizes (large, >7 mm; medium, ~5-7 mm; small, <3-5 mm) of follicles (75-85 and 49-90 mg/dl; p>0.05). Total lipid concentrations remained constant in serum (395-472 mg/dl), and reduced significantly in the pFF from large follicles (287 mg/dl) at 132 h after PMSG treatment when compared to those at other time points (441-480 mg/dl). Basal cholesterol levels in serum and pFF at 12 h were similar (153-161 mg/dl), but increased at 36 h (186-197 mg/dl). Basal P4 and E2 levels in serum (0.1 ng/ml and 5.5 pg/ml) were low, but increased from 0.34 ng/ml and 12.13 pg/ml at 24 h to 0.81 ng/ml and 61.70 pg/ml at 98 h, respectively, after PMSG treatment (p<0.05). P4 levels increased linearly in pFF from large follicles during 12 through 132 h (138-1,288 ng/ml). A similar increase was also observed in $E_2$ levels (22-730 pg/ml) before 60 h post PMSG treatment, and then dropped afterwards (730-121 pg/ml). The development of the oocytes fertilized in 40% pFF-medium was greater than that in 100% pFF-medium group without gonaodtropin addition (31% vs 10%, p<0.05). However, both were lower than those in mBMOC-2+20%PS and in rabbit oviducts (p<0.05). When cocultured with cumulus cell monolayers, a greater cleavage rate was observed in the group cultured in filtered IVM-conditioned medium than the SMRP group (36% vs 18%, p<0.05). A similar phenomenon was also observed in the culture without cumulus cell monolayers (33% vs 19%, p<0.05). It is concluded that neither the fresh IVM nor filtered IVM-conditioned medium has positive effect on the IVD of oocytes. Coculture with cumulus cell monolayers and the SMRP were not beneficial to the development of IVF pig oocytes.

Keywords

References

  1. Ainsworth, L., B. K. Tsang, B. R. Downey, G. J. Marcus and D. T. Armstrong. 1980. Interrelationships between follicular fluid steroid levels, gonadotropic stimuli, and oocyte maturation during preovulatory development of porcine follicle. Biol. Reprod. 23:621-627. https://doi.org/10.1095/biolreprod23.3.621
  2. Agrawal, K. P., I. V. Mongha and N. K. Bhattacharyya. 1983. Survival of goat embryos in rabbit oviduct. Vet. Rec. 112:200. https://doi.org/10.1136/vr.112.9.200
  3. Allen, W. R., F. Stewart, A. O. Trounson, M. Tischner and W. Bielanski. 1976. Viability of horse embryos after long distance transport in the rabbit. J. Reprod. Fertil. 47:387-390. https://doi.org/10.1530/jrf.0.0470387
  4. Archibong, A. E., R. M. Petters and B. H. Johnson. 1989. Development of porcine embryos from one- and two-cell stages to blastocysts in culture medium supplemented with porcine oviductal fluid. Biol. Reprod. 41:1076-1083. https://doi.org/10.1095/biolreprod41.6.1076
  5. Barboni, B., M. Turriani, G. Galeati, M. Spinaci, M. L. Bacci, M. Forni and M. Mattioli. 2000. Vascular endothelial growth factor production in growing pig antral follicles. Biol. Reprod. 62:1160-1167. https://doi.org/10.1095/biolreprod62.5.1160
  6. Brussow, K. P., J. Ratkyand, F. Schneider, H. Torner, W. Kanitz and L. Solti. 1999. Effects of follicular fluid on the transport of porcine oocytes into the oviduct at ovulation. Reprod. Dom. Anim. 34:423-429. https://doi.org/10.1111/j.1439-0531.1999.tb01396.x
  7. Burr, J. H. and J. I. Davies. 1951. The vascular system of the rabbit ovary and its relationship to ovulation. Anat. Rec. 111:273-297. https://doi.org/10.1002/ar.1091110302
  8. Coy, P., S. Ruiz, R. Romar, I. Campos and J. Gadea. 1999. Maturation, fertilization and complete development of porcine oocytes matured under different systems. Theriogenology 514:799-812. https://doi.org/10.1016/S0093-691X(99)00028-X
  9. Davis, D. L. and B. N. Day. 1978. Cleavage and blastocyst formation by pig eggs in vitro. J. Anim. Sci. 46:1043-1053. https://doi.org/10.2527/jas1978.4641043x
  10. Ding, J. and G. R. Foxcroft. 1992. Follicular heterogeneity and oocyte maturation in vitro in pigs. Biol. Reprod. 47:648-655. https://doi.org/10.1095/biolreprod47.4.648
  11. Ellefson, R. D. and W. T. Caraway. 1975. Lipids and lipoproteins. In: 'Foundamentals of Chemical Chemistry' (Ed. N. W. Tiete and W. B. Sauders). Co. Philadelphia.
  12. Espey, L. L. and H. Lipner. 1994. Ovulation. In: 'The Physiology of Reproduction'. 2nd edition (Ed. E. Knobil and J. D. Neill). Raven Press. pp. 725-780.
  13. Falhot, K., B. Lund and W. Falhot. 1973. An easy colorimetric micromethod for routine determination of free fatty acid in plasma. Clinica Chimica Act. 46:105. https://doi.org/10.1016/0009-8981(73)90016-8
  14. Fukushima, M. and Y. Fukui. 1985. Effects of gonadotropins and steroids on the subsequent fertilizability of extra-follicular bovine oocytes cultured in vitro. Anim. Reprod. Sci. 9:323-332. https://doi.org/10.1016/0378-4320(85)90061-2
  15. Funahashi, H. and B. N. Day. 1993a. Effects of follicular fluid at fertilization in vitro on sperm penetration in pig oocytes. J. Reprod. Fertil. 99:97-103. https://doi.org/10.1530/jrf.0.0990097
  16. Funahashi, H. and B. N. Day. 1993b. Effects of different serum supplements in maturation medium on meiotic and cytoplasmic maturation of pig oocytes. Theriogenology 39:965-973. https://doi.org/10.1016/0093-691X(93)90433-6
  17. Gerard, M., Y. Menezo, P. Rombauts, D. Szollosi and C. Thibault. 1979. In vitro studies of oocytes of oocyte maturation and follicular metabolism in the pig. Annls. Biol. Anim. Biochim. Biophys. 19:1521-1535. https://doi.org/10.1051/rnd:19790914
  18. Guraya, S. S. 1985. Biology of ovarian follicles in mammals. Springer-Verlag, Berlin. pp. 150-194.
  19. Hafez, E. S. E. 1987. Folliculogenesis, egg maturation and ovulation. In: Reproduction in Farm Animals (Ed. E. S. E. Hafez). 5th edtion. Lea & Febiger, Philadelphia. pp.130-167.
  20. Herrmann, H. H. and W. Holtz. 1985. Storage of pig embryos in the ligated rabbit oviduct and its effect on the viability after retransfer to synchronized gilts. Anim. Reprod. Sci. 8:159-170. https://doi.org/10.1016/0378-4320(85)90083-1
  21. Huang, W. T., P. C. Tang, S. C. Wu, S. P. Cheng and J. C. Ju. 2001. Effects of levels and sources of follicular fluid on the in vitro maturation and development of porcine oocytes. Asian-Aust. J. Anim. Sci. 14(10):1360-1366. https://doi.org/10.5713/ajas.2001.1360
  22. Hunter, M. G. 2000. Oocyte maturation and ovum quality in pigs. Rev. Reprod. 5:122-130. https://doi.org/10.1530/ror.0.0050122
  23. Hunter, R. H. F. 1990. Fertilization of pig eggs in vivo and in vitro. J. Reprod. Fertil. Suppl. 40:211-226.
  24. Ju, J. C., Y. C. Chang, W. T. Huang, P. C. Tang and S. P. Cheng. 2001. Superovulation and transplantation of demi- and aggregated-embryos in rabbits. Asian-Aust. J. Anim. Sci. 14:455-461. https://doi.org/10.5713/ajas.2001.455
  25. Ju, J. C., S. P. Cheng, P. C. Tarng and K. B. Choo. 1991. In vivo development and microinjection of rabbit zygotes. Asian-Aust. J. Anim. Sci. 4(1):73-78. https://doi.org/10.5713/ajas.1991.73
  26. Kihara, T., A. Kimura, A. Moriyama, I. Ohkubo and T. Takahashi. 2000. Identification of components of the intrafollicular bradykinin-producing system in the porcine ovary. Biol. Reprod. 63:858-864. https://doi.org/10.1095/biolreprod63.3.858
  27. Kishi, H., M. Kondoh, N. Nagamine, F. Shi, G. Watanabe and K. Taya. 1997. Roles of the basal level of LH and FSH in the regulation of follicular development during pseudopregnancy in the rat. J. Reprod. Dev. 43(4):279-287. https://doi.org/10.1262/jrd.43.279
  28. Krisher, R. L., R. M. Petters and B. H. Johnson. 1989. Effect of oviductal condition on the development of one-cell porcine embryos in mouse or rat oviducts maintained in organ culture. Theriogenology 32:885-892. https://doi.org/10.1016/0093-691X(89)90497-4
  29. Lin, J. H., T. Shiao and L. A. Shie. 1977. Ultra microtechnique for determination of blood glucose with the modified Somogyi-Nelson method. J. Chin. Soc. Anim. Sci. 6:57-59.
  30. Linder, G. M. and R. W. Wright, Jr. 1978. Morphological and quantitative aspects of the development of swine embryo in vitro. J. Anim. Sci. 46:711-718. https://doi.org/10.2527/jas1978.463711x
  31. Lipner, H. and R. O. Greep. 1971. Inhibition of steroidogenesis at various sites in the biosynthetic pathway in relation to induced ovulation. Endocrinology 88602-604. https://doi.org/10.1210/endo-88-3-602
  32. Long, C. R., J. R. Dobrinsky and L. A. Johnson. 1999. In vitro production of pig embryos: comparisons of culture media and boars. Theriogenology 51:1375-1390 https://doi.org/10.1016/S0093-691X(99)00081-3
  33. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-267.
  34. Machaty, Z., B. N. Day and R. S. Prather. 1998. Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59:451-455. https://doi.org/10.1095/biolreprod59.2.451
  35. Meinecke, B. and S. Meinecke-Tillmann. 1998. Amino acid concentrations in porcine follicular fluid and ovarian plasma during preovulatory follicular development. Tieraerztl. Umschau. 53(7):429-436.
  36. Nagai T, K. Niwa and A. Iritani. 1984. Effect of sperm concentration during preincubation in a defined medium on fertilization in vitro of pig follicular oocytes. J. Reprod. Fertil. 70:271-275. https://doi.org/10.1530/jrf.0.0700271
  37. Naito, K., Y. Fukuda and Y. Toyoda. 1988. Effects of porcine follicular fluid on male pronucleus formation in porcine oocytes matured in vitro. Gamete Res. 21:289-295. https://doi.org/10.1002/mrd.1120210310
  38. Naito, K., Y. Fukuda and I. Ishibashi. 1989. Developmental ability of porcine ova matured in porcine follicular fluid in vitro and fertilized in vitro. Theriogenology 31:1049-1057. https://doi.org/10.1016/0093-691X(89)90488-3
  39. Naito, K., M. Kosaka, Y. Fukuda, I. Ishibashi and Y. Toyoda. 1990. Analysis of the factor(s) present in follicular fluids promoting male pronucleus formation ability of porcine follicular oocytes. Jpn. J. Anim. Reprod. 36:213-218. https://doi.org/10.1262/jrd1977.36.213
  40. Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73.
  41. Petters, R. M., B. H. Johnson, M. L. Reed and A. E. Archibong. 1990. Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J. Reprod. Fertil. 89:269-275. https://doi.org/10.1530/jrf.0.0890269
  42. Pope, C. E. and B. N. Day. 1977. Transfer of preimplantation pig embryos following in vitro culture for 24 or 48 hours. J. Anim. Sci. 44:1036-1040. https://doi.org/10.2527/jas1977.4461036x
  43. Reed, M. L., M. J. Illera and R. M. Petters. 1992. In vitro culture of pig embryos. Theriogenology 37:95-109. https://doi.org/10.1016/0093-691X(92)90249-Q
  44. Rondell, P. 1970. Follicular process in ovulation. Fed. Pro. 29:1875.
  45. Sirard, M. A. and R. D. Lambert. 1986. Birth of calves after in vitro fertilization using laparoscopy and rabbit oviduct incubation of zygotes. Vet. Rec. 119:167-169. https://doi.org/10.1136/vr.119.8.167
  46. Snedecodr, G. W. and W. G. Cochran. 1980. Statistical methods.7th edition. Ames IA, The Iowa State Univ. Press, pp. 290-291.
  47. Tsafriri, A. and C. P. Channing. 1975. An inhibitory influence of granulosa cells and follicular fluid upon porcine oocyte meiosis in vitro. Endocrinology 96:922-927. https://doi.org/10.1210/endo-96-4-922
  48. Vatzias, G. and D. R. Hagen. 1999. Effects of porcine follicular fluid and oviduct-conditioned media on maturation and fertilization of porcine oocytes in vitro. Biol. Reprod. 60:42-48. https://doi.org/10.1095/biolreprod60.1.42
  49. White, K. L., K. Hehnke, L. F. Rickords, L. L. Southern, D. L. Thompson, Jr. and T. C. Wood. 1989. Early embryonic development in vitro by coculture with oviductal epithelial cells in pigs. Biol. Reprod. 41:425-430. https://doi.org/10.1095/biolreprod41.3.425
  50. Wright, Jr. R. J. 1977. Successful culture in vitro of swine embryo to the blastocyst stage. J. Anim. Sci. 44:854-858. https://doi.org/10.2527/jas1977.445854x
  51. Wu, S. C., S. P. Cheng, B. T. Liu, C. M. Chiou and C. C. Chu. 1991. In vitro maturation of porcine oocytes and their subsequent developmental capacity: II. Effects of the follicle size and pFF addition to the oocyte maturation medium. J. Chinese Soc. Anim. Sci. 20:469-480.
  52. Yamada, Y. and Y. Kawai. 1997. Changes of sex steroids and prostaglandins around induced ovulation. Jpn. J. Swine. Sci. 34(4):157-162. https://doi.org/10.5938/youton.34.157
  53. Yamada, Y. and Y. Kawai. 1997. Changes of sex steroids and prostaglandins at inhibition of ovulation by inhibitor of prostaglandin biosynthesis in the gilts. Jpn. J. Swine. Sci. 36(3):117-123.
  54. Yanagimachi, R. 1969. In vitro capacitation of hamster spermatozoa by follicular fluid. J. Reprod. Fertil. 18:275-286. https://doi.org/10.1530/jrf.0.0180275
  55. Yoshida, M., Y. Ishizaki and H. Kawagishi. 1990. Blastocyst formation by pig embryos resulting from in-vitro fertilization of oocytes matured in vitro. J. Reprod. Fertil. 88:1-8. https://doi.org/10.1530/jrf.0.0880001
  56. Yoshida, M., Y. Ishizaki, H. Kawagishi, K. Bamba and Y. Kojima. 1992. Effects of pig follicular fluid on maturation of pig oocytes in vitro and on their subsequent fertilizing and developmental capacity in vitro. J. Reprod. Fertil. 95:481-488. https://doi.org/10.1530/jrf.0.0950481

Cited by

  1. Biochemical composition of ovine follicular fluid in relation to follicle size vol.49, pp.1, 2007, https://doi.org/10.1111/j.1440-169X.2007.00901.x
  2. Biochemical composition of blood plasma and follicular fluid in relation to follicular size in buffalo vol.20, pp.5, 2011, https://doi.org/10.1007/s00580-010-1014-5
  3. Dynamics of ovarian follicular fluid in cattle vol.20, pp.6, 2011, https://doi.org/10.1007/s00580-010-1038-x
  4. The effect of corpus luteum on hormonal composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows vol.7, pp.suppl1, 2002, https://doi.org/10.1016/s1995-7645(14)60247-9
  5. Biochemical composition of the fluid of ovarian cysts and pre-ovulatory follicles compared to the serum in sows vol.43, pp.4, 2002, https://doi.org/10.15653/tpg-140836