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We investigate an alternative blind adaptive multiuser 
detection scheme based on a non-canonical linearly 
constrained constant modulus (LCCM) criterion and 
prove that, under the constrained condition, the non-
canonical linearly constrained constant modulus algorithm 
(LCCMA) can completely remove multiple -access 
interference. We further demonstrate that the non-
canonical LCCM criterion function is strictly convex in the 
noise-free state, and that under the constrained condition, it 
is also strictly convex even where small noise is present. We 
present a simple method for selecting the constant as well 
as a stochastic gradient algorithm for implementing our 
scheme. Numerical simulation results verify the scheme’s 
efficiency. 
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I. INTRODUCTION 

Blind multiuser detection, which requires prior knowledge 
of only the signature waveform and timing of the desired user, 
has recently received considerable attention [1]. The main 
motivation for employing the blind scheme is to avoid the 
requirement of a training sequence, and thus offer better 
spectrum efficiency. 

The purpose of blind equalization techniques in multiuser 
detection, such as the constant modulus algorithm (CMA) [2], 
is to remove multiple access interference (MAI). One study 
showed that the constant modulus receiver could perform 
almost as well as the non-blind receiver design if undesirable 
local minima could be avoided [3]. Another work discussed 
how the minimum mean square error (MMSE) receiver 
approximates the local minima of the CMA cost function [4]. 
The constrained versions of the CMA should be considered for 
avoiding the undesired local minima. 

S. Verdu et al. proposed  a method that insures global 
convergence of blind equalizers  [5]. Oda and Sato attempted to 
apply blind equalization to a multiuser detection [6], but their 
paper did not satisfactorily address the issue of discriminating 
between local minima. Later on, a linearly constrained constant 
modulus (LCCM) algorithm for MAI suppression was 
developed in [7]. Next, Z. Tang et al. presented a closed-form 
analysis of the linearly constrained CMA-based blind multiuser 
detector [8]. However, the analysis in [8] was incorrect. In fact, 
according to their analysis, the global convergence of the 
LCCM detector cannot be obtained. In this paper, we further 
analyze the global convergence of the linearly constrained 
CMA-based blind multiuser detector and correct the mistakes 
in  [8]. The mistakes in [8] along with their correction are 
shown in the appendix.  
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This paper considers a non-canonical linearly constrained 
constant modulus algorithm (LCCMA) for blind multiuser 
detection. We prove that under the constrained condition, the 
non-canonical LCCMA can completely remove multiple-
access interference, and that the non-canonical LCCM criterion 
function is strictly convex in the noise-free state. When small 
noise is present, the non-canonical LCCM criterion function is 
also strictly convex under the constrained condition. We 
suggest a simple method for selecting the constant. Moreover, 
our paper presents an adaptive algorithm for implementing our 
scheme using stochastic gradient methods. 

This paper is organized as follows. Section II introduces the 
system model. Section III investigates the non-canonical 
LCCM criterion and proposes three important propositions. 
Section IV presents our adaptive algorithm along with its 
numerical simulation. Section V draws our conclusions. 

In this paper, boldface lower and upper case letters denote 
column vectors and matrices, respectively. The superscript T 
stands for transpose, and  denotes the  identity 
matrix. Bold zero ‘ ’ denotes a zero matrix or a zero vector 
with corresponding dimensions. 
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II. THE SYSTEM MODEL 

We consider a synchronous DS-CDMA system with K users. 
The received signal is given by 
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where , , and  represent the received amplitude, 
transmitted symbol, and normalized signaling waveform of the 
k-th user, respectively, and  is the additive white Gaussian 
noise (AWGN) with a zero mean and variance . For 
simplicity, we assume that  is a binary phase-shift keying 
(BPSK) signal, that is,  is either of two independent 
equiprobable random variables, and that  is real and 
supported only on the interval , which is of the form 
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where  is the processing gain,  is a 
signature sequence of ’s assigned to the k-th user, and 
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is a normalized chip waveform of duration , where 

. 
cT

TNTc =
At the receiver, chip-matched filtering followed by chip rate 

sampling yields an -vector of chip-matched filter output 
samples within a symbol interval 
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 is the normalized 
signature waveform vector of the k-th user, and  is an 
AWGN vector with mean  and covariance matrix . 
In this paper, we assume that the signal vectors  are 
independent, and user 1 is the desired user. 
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III. LINEARLY CONSTRAINED CONSTANT 
  MODULUS 

1. Introduction of Cost Function 

We consider an LCCMA receiver, which is given by the 
following constrained optimization problem: 
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where  is a certain constant and  is called a 
non-canonical constraint. When , the constraint is 
canonical as given in [9]. The canonical constant modulus is a 
special example of a non-canonical constant modulus. In the 
following, LCCM denotes a non-canonical LCCM. 
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We next analyze the ability of the LCCMA to remove MAI. 
We consider the situation in which the noise is negligible, i.e., 

0=σ . For convenience, we specify that u , 
and . Since b  denotes independent 
equiprobable  random variables, we have 
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Since the linear constraint  is equivalent to 
, optimization problem (4) reduces to 
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In the following, we consider the extrema of the function 
)(uϕ  as . Define dAu 11 =

     ),()( duu ϕϕ =                  (9) 

where T
Kuu ],,[ 2 L=u  and TT

d dA ],[ 1 uu = . The first and 
second partial derivatives of function )(uϕ  are, respectively, 
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2. Analysis without Noise: Stationary Points and 
Propositions 

When , it is obvious from (10) that 13 22
1 ≥dA )(uϕ  has 

the unique stationary point 0u =0 . The Hessian matrix at the 
stationary point is 
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When , 13 1 <dA )(uϕ  has other nonzero stationary 

points besides 0u =0 . Let mu

,1L=

 be these nonzero stationary 
points in which there are m  nonzero elements, which are 
indicated by , where , and . 
From (10), we have 
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Thus, when 3 , 122
1 <dA )(uϕ  has the stationary points 

0u =0  and 
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in which  and  denote the subscript and 
number of nonzero elements, respectively, in the stationary 
point 

},,3,2{ Kki L∈ m

mu . We next examine the property of the above 
stationary points. 

Since the Hessian matrix at the stationary point 0u
<0

 is 
 and , we have . 
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0u  is the maximum point. With the symmetrical 

property of )(uϕ , we know that the stationary points mu  for 
given  possess the same property. So let’s only consider the 
positive situation without a loss of generality. 
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According to (11), the Hessian matrix at the stationary point 
mu  is 
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Therefore,  when , and 
 is indefinite when . Consequently, 
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minimum point, and mu is the saddle point when , 
which is not an extreme point. 
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From the above analysis, we get the following: 
i) When  and 13 22

1 ≥dA 0=σ , the LCCM cost function 
)(uϕ  has the global minima 0=0u , which satisfy a 

decorrelating condition: 
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ii) When 3  and 122
1 <dA 0=σ , )(uϕ  has a local 

maximum point 0u =0  and 2 2−K  local minimum points 
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Therefore, we have the following proposition. 
Proposition 1: i) When 3 , the LCCMA receiver 
possesses the ability to remove MAI. ii) When , the 
LCCMA receiver cannot completely remove MAI. In this case 
the performance is relatively poor.       
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)(uϕ  has the unique stationary point 0u =0 , which is the 
global minimum point. It also means the function )(uϕ  is 
convex. From this, we get the following proposition. 
Proposition 2: When  and , the function 
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In the following, we will consider the convexity of the 
function  with the constraint  when noise is 
present. 
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3. Analysis with Noise: Proposition and Example 

Denote  where S  and  ,wASu T= ],,[ 1 Kss L= diag=A
),,( 1 KAA L . 

By analogue to the derivation given in [4] and [7], we can 
calculate 
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From proposition 2, we know when  and 
 with the constraint  is convex. 

Since  is continuous in terms of , we can assume 
that the extrema of the function in the noisy case can be 
deduced for a small  by a slight perturbation of the noise-
free extrema. Hence, for small , it also follows that  
with the constraint  is convex when . 
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The solution to optimization problem (4) lies in the space 
spanned by the columns of the signature waveform matrix . S
Let . We have  or  

. Thus, the solution to this optimization problem can be 
Svw =

u
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expressed with . According to (21), 
we define 
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An example demonstrates the exactness of the above 
proposition. The surfaces of function )(uϕ  are plotted in Figs. 
1(a)-(c) for three different values, , 15.0=d 31
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where the number of users is  and the processing gain 
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Figure 1(a) shows the case of , where the 
function 

13 1 <dA
)(uϕ  is a saddle. Figs. 1(b) and (c) show the case of 

, where the function 13 22
1 ≥dA )(uϕ  is strictly convex in a 

small noise state. 

IV. ADAPTIVE ALGORITHM AND 
SIMULATION 

Using a stochastic gradient algorithm, we derive an 
adaptive algorithm to solve optimization problem (4) in this 
section. Since  is equivalent to , 
( ), where  whose columns span the 
orthogonal complement of vector . Therefore, constrained 
optimization problem (4) can be converted into an 
unconstrained form: 
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Using stochastic gradient methods, we can solve 
optimization problem (25) and derive the following adaptive 
algorithm. 
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where µ  is the step size and 131 Ad ≥ . 
The output signal-to-interference ratio (SIR) is 
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We consider a synchronous CDMA system with the 

processing gain  and the number of users . 
The spreading sequences  are randomly 
generated. The desired user is user 1. The received amplitude 
of user 1 is . There are four dB multiple-access 
interferers, i.e., 
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noise ratio is dB and 10 µ =0.007. 
Figure 2 shows the output signal-to-interference ratio of the 

LCCMA receiver versus the number of iterations for three 
different constants . Figure 2 reveals that the performance of 
the LCCMA receiver is very poor when . Here  
is the case of . On the other hand, we know from 
Fig. 2 that the LCCMA receiver exhibits a good performance 
when  and . In this case, satisfies the condition 
of . 
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Fig. 2. Signal-to-interference ratio of the LCCMA receiver for 
      d=2, 8 and 40, respectively. 
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Later on, we consider the effect from step size µ . From 
simulation experiments we know that the LCCMA with a step 
size that is too small has a slower convergence speed. However, 
if µ  is too big, the algorithm converges to undesired points. 
It is better to select a smaller value in practical systems. 
Through a large number of simulation experiments, we 
concluded that the range of the step size is 0< µ <0.05. This 
conclusion corresponds to the result of [11]. 

Figure 3 shows the output signal-to-interference ratio of the 
LCCMA receiver ( ) and the minimum output energy 
(MOE) receiver [9]. This figure shows that the modified CMA 
receiver outperforms the MOE receiver when the adaptive 
algorithms of the two receivers reach convergence. 

8=d

In the above sections we defined the best choice of this 
constant  which is 3 . In the above simulation we 
directly give the value of  according to . However, we 
should point out that we don’t know  a priori because it 
depends on channel features. The simplest choice of  
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Fig. 3. Signal-to-interference ratio of the LCCMA receiver 
        and the MOE receiver.  

 
which satisfies the condition for the convexity of the cost 
function is 
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V. CONCLUSIONS 

In this paper, we presented a non-canonical LCCM-based 
blind adaptive multiuser detection scheme. When , 
the LCCMA receiver possesses the ability to remove MAI; 
when , the LCCMA receiver cannot completely 
remove MAI. When  and , the function 

 with the constraint  is convex; when 
 and , for a small , the function 

 with the constraint  is also convex. 
Moreover, we proposed an adaptive algorithm for 
implementing the blind scheme using stochastic gradient 
methods and a simple method for selecting the constant . 
Simulation examples demonstrate the efficiency of the 
propositions and the algorithm for our scheme. In addition, 
we identified the deficiencies in the analysis and conclusion 
of [8]. 
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For simplicity our propositions are deduced on the basis of a 
BPSK signal and real signaling. In fact, the extension to the 
MPSK signal and complex signaling is straightforward. 

APPENDIX 

Mistakes in [8] and correction 
Assume user 1 to be the desired user whose signature code 
 and power  are known. The LCCM criterion is used 

for updating  following the optimization problem in [8]: 
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Let and , and the following 
equation is derived in [8]: 
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In order to analyze the global convergence of the linearly 
constrained CMA-based blind multiuser detector, the authors in 
[8] calculated the Hessian matrix of However, the 
calculation of the Hessian matrices of  and  
are incorrect in [8]. In [8], 
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We can easily check items  and G  and see that they 
are incorrect in (33) and (34) by showing that  and  
are not positive definite. For simplicity, we consider two users, 
and , , and . Then we have 
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It is obvious from (35) and (36) that matrices  and  
are non-definite. Therefore, the proof that  is 
incorrect in [8]. 
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In fact,  and G  should be kD kl
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Moreover, by using the transformation of 0, >⇒ ααww , 
we can see that the following optimization problem 
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and optimization problem (31) are equivalent. 
Note that criterion (39) is the same as criterion (4) when 

α1=d . Then according to the conclusions presented in 
section III, the constrained condition on the power  in 
optimization problem (4) can be reduced to 

2
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From (40) and α1=d
A
, we can easily get the constrained 

condition on the power  in optimization problems (31) 
and (39), which is 
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Under the constrained condition, the LCCM detector 
possesses the property of global convergence, which refutes the 
conclusion in [8] that the global convergence of the LCCM 
detector cannot be obtained. 
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