Self-Consistent Subband Calculations of AlGaN/GaN Single Heterojunctions

  • Received : 2001.12.20
  • Published : 2002.08.31

Abstract

We present a self-consistent numerical method for calculating the conduction-band profile and subband structure of AlGaN/GaN single heterojunctions. The subband calculations take into account the piezoelectric and spontaneous polarization effect and the Hartree and exchange-correlation interaction. We calculate the dependence of electron sheet concentration and subband energies on various structural parameters, such as the width and Al mole fraction of AlGaN, the density of donor impurities in AlGaN, and the density of acceptor impurities in GaN, as well as the electron temperature. The electron sheet concentration was sensitively dependent on the Al mole fraction and width of the AlGaN layer and the doping density of donor impurities in the AlGaN. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.

Keywords

References

  1. J. Vac. Sci. Technol. B v.10 no.4 GaN, AlN, and InN: a Review Strite, S.;Morkoc, H.
  2. J. Appl. Phys. v.82 no.4 Monte Carlo Calculation of Velocity-Field Characteristics of Wurtizite GaN Bhapkar, U.V.;Shur, M.S.
  3. Physics of Semiconductor Devices Sze, S.M.
  4. J. Appl. Phys. v.75 no.11 Electron Mobilities in Gallium, Indium, and Aluminum Nitrides Chin, V.W.L.;Tansley, T.L.;Osotchan, T.
  5. 2000 IEEE MTT-S Int’l Microwave Symp.;2000 IEEE MTT-S Int’l Microwave Symposium Digest 14-W GaN-Based Microwave Power Amplifiers Wu, Y.F.;Kapolnek, D.;Ibbetson, J.P.;Parikh, P.;Keller, B.P.;Mishra, U.K.
  6. IEEE Trans. Microwave Theory and Tech. v.48 no.12 A 3-10-GHz GaN-Based Flip-Chip Integrated Broad-Band Power Amplifier Xu, J.J.;Keller, S.;Parish, G.;Heikman, S.;Mishra, U.K.;York, R.A.
  7. Appl. Phys. Lett. v.63 no.9 High Electron Mobility Transistor Based on a GaN-$Al_xGa_{1-x}$N Heterojunction Asif Khan, M.;Bhattarai, A.;Kuznia, J.N.;Olson, D.T.
  8. Phys. Rev. B v.56 no.15 Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides Bermardini, F.;Fiorentini, V.;Vanderbilt, D.
  9. Phys. Rev B v.24 no.10 Superlattice Band Structure in the Envelope-Function Approximation Bastard, G.
  10. ETRI J. v.21 no.1 Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure Kim, B.W.;Jun, Y.I.;Jung, H.B.
  11. ETRI J. v.21 no.4 An Improved Calculation Model for Analysis of [111] InGaAs/GaAs Strained Piezoelectric Superlattices Kim, B.W.;Yoo, J.H.;Kim, S.H.
  12. Phys. Rev. B v.30 no.2 Electron Energy Levels in GaAs-$Ga_{1-x}Al_xAs$ Heterojunctions Stem, F.;Sarma, S.D.
  13. Phys. Rev. B v.51 no.19 Theoretical Investigations of the Effect of a Magnetic Field on the Landau-Level Structure of a Modulation-Doped Single Heterojunction Having Two Occupied Subbands Lee, K.S.;Lee, E.H.
  14. ETRI J. v.17 no.4 Optical Determination of the Heavy-Hole Effective Mass of (In,Ga)As/GaAs Quantum Wells Lee, K.S.;Lee, E.H.
  15. J. Appl. Phys. v.85 no.1 Charge Control and Mobility Studies for an AlGaN/GaN High Electron Mobility Transistor Zhang, Y.;Singh, J.
  16. J. Appl. Phys. v.85 no.6 Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-face AlGaN/GaN Heterostructures Ambacher, O.;Smart, J.;Shealy, J.R.;Weimann, N.G.;Chu, K.;Murphy, M.;Dimitrov, R.;Wittmer, L.;Stutzmann, M.;Rieger, W.;Hilsenbeck, J.
  17. IEEE Trans. Elec. Devices v.48 no.3 Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs Sacconi, F.;Carlo, A.D.;Lugli, P.;Morkoc, H.
  18. Piezoelectricity Cady, W.G.
  19. Appl. Phys. Lett. v.74 no.4 Piezoelectric Polarization Associated with Dislocations in Wurtzite GaN Shi, C.;Asbeck, P.M.;Yu, E.T.
  20. Properties of Group Ⅲ Nitrides Edgar, J.H.
  21. Appl. Phys. Lett. v.70 no.9 Elastic Moduli of Gallium Nitride Schwarz, R.B.;Khachaturyan, K.;Weber, E.R.
  22. IEEE Trans. Ultrasonics, Ferroelectrics, and Freq. Control v.41 no.1 Piezoelectric Materials for Acoustic Wave Applications Gualtieri, J.G.;Kosinski, J.A.;Ballato, A.
  23. J. Appl. Phys. v.81 no.9 Elastic Strain Relaxation and Piezoeffect in GaN-AlN, GaN-AlGaN, and GaN-InGaN Superlattices Bykhovsky, A.D.;Gelmont, B.L.;Shur, M.S.
  24. Mater. Res. Soc. Proc. v.449 Electronic Structure of Biaxially Strained Wurtzite Crystals GaN and AlN Majewski, J.A.;Staedele, M.;Vogl, P.
  25. Physics of Semiconductor Devices Sze, S.M.
  26. Phys. Rev. B v.50 no.11 Atomic Geometry and Electronic Structure of Native Defects in GaN Neugebauer, J.;Van de Walle, C.
  27. Phys. Rev. B v.55 no.19 Stability of Deep Donor and Acceptor Centers in GaN, AlN, and BN Park, C.H.;Chadi, D.J.
  28. Appl. Phys. Lett. v.77 no.7 Polarization-Induced Electron Populations Ridley, B.K.
  29. Progress Quantum Electronics v.20 no.5/6 Progress and Prospects of Group-Ⅲ Nitride Semiconductors Mohammad, S.N.;Morkoc, H.
  30. J. Phys. C v.4 Explicit Local Exchange-Correlation Potentials Hcdin, L.;Lundqvist, B.I.
  31. Appl. Phys. Lett. v.72 no.6 Electron Transport in AlGaN-GaN Heterostructures Grown on 6H-SiC Substrates Gaska, R.;Yang, J.W.;Osinsky, A.;Chen, Q.;Asif Khan, M.;Orlov, A.O.;Snider, G.L.;Shur, M.S.
  32. Appl. Phys. Lett. v.73 no.10 Magnetotransport Study on the Two-Dimensional Electron Gas in AlGaN/GaN Heterostructures Wong, L.W.;Cai, S.J.;Li, R.;Wang, K.;Jiang, H.W.;Chen, M.
  33. J. Appl. Phys. v.87 no.1 Characterization of an AlGaN/GaN Two-Dimensional Electron Gas Structure Saxler, A.;Debray, P.;Perrin, R.;Elhamri, S.;Mitchel, W.C.;Elsass, C.R.;Smorchkova, I.P.;Heying, B.;Haus, E.;Fini, P.;Ibbetson, J.P.;Keller, S.;Petroff, P.M.;DenBaars, S.P.;Mishra, U.K.;Speck, J.S.
  34. J. Appl. Phys. v.87 no.11 Charge Control and Mobility in AlGaN/GaN Transistors: Experimental and Theoretical Studies Zhang, Y.;Smorchkova, I.P.;Elsass, C.R.;Keller, S.;Ibbetson, J.P.;Denbaars, S.;Mishra, U.K.;Singh, J.