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A spatial object changes its states over time. However, 
existing spatial and temporal database systems cannot fully 
manage time-varying data with both spatial and non-
spatial attributes. To overcome this limitation, we present a 
framework for spatio-temporal databases that can manage 
all time-varying historical information and integrate 
spatial and temporal relationship operators into the select 
statement in SQL3. For the purpose of our framework, we 
define three referencing macros and a history aggregate 
operator and classify the existing spatial and temporal 
relationship operators into three groups: exclusively spatial 
relationship operators, exclusively temporal relationship 
operators, and spatio-temporal common relationship 
operators. Finally, we believe the integration of spatial and 
temporal relationship operators into SQL3 will provide a 
useful framework for the history management of time-
varying spatial objects in a uniform manner. 
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I. INTRODUCTION 

A geographic information system (GIS) is a computer-based 
information system that enables the capturing, modeling, 
manipulation, retrieval, analysis , and presentation of 
geographically referenced data [1]. Conventional GISs are able 
to manipulate only a snapshot image of time-varying spatial 
objects. However, a spatial object changes its state over time by 
either spatial event operations or non-spatial event operations. 
Major temporal studies on handling the history management of 
spatial objects in GISs can be divided into two categories : the 
temporal geographic information system (TGIS)-based 
approach and the spatio -temporal database-based approach. 
First, in the last several years, many investigations on temporal 
GISs, such as Beller’s TGIS prototype  [2], Montgomery [3] 
and Renolen’s TGIS [4], and other GIS space-time models [5]- 
[7] have aimed at developing TGIS prototypes and 
requirements specifications. Second, in addition to reports on 
existing spatial databases [8]-[14] and temporal databases  [15]-
[19], many recent papers [18], [19]-[28] have reported spatio-
temporal models and their operations, which explicitly record 
spatial changes over time as they relate to specific geographic 
entities. For example, Peuquet and Duan [18] proposed an 
event-based approach to represent a spatio -temporal data 
model, and Worboys [20] described a unified model of spatial 
and temporal data as well as a spatio -temporal relational 
algebra. Lorentzos [19] also presented an extension to SQL, 
IXSQL, for the management of interval data. IXSQL includes 
an interval-extended relational algebra , extensions of data 
definition language, and data manipulation language in SQL. 
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Peuquet and Duan [18] and Claramunt [8] suggested spatio-
temporal data models based on an event time, while Worboy’s 
spatio-temporal data model [20] provided bi-temporal elements 
of valid time and transaction time. Recently, practical object-
oriented spatio-temporal data models were proposed in SAIF 
[25] and CHOROCHRONOS [26], [27]. 

Notice that previous research on conventional spatial and 
temporal databases has focused mainly on managing spatial data 
and time-varying historical data in databases. However, those 
models cannot handle time-varying spatial objects in a GIS 
without any modification, nor do they integrate the existing spatial 
and temporal relationship operators into the select statement of 
SQL3. Worboys [29] addressed only the needs of handling the 
spatial and temporal references in a uniform fashion, and 
Claramunt [6] suggested the need to merge space and time and to 
relate them to dimensional thematic data. 

To overcome these limitations, we focus on solving two major 
problems in the development of spatio-temporal databases: 
unifying spatial and temporal data models into a single spatio-
temporal data model and then integrating the existing spatial and 
temporal relationship operators into the select statement of SQL3. 
Our main contribution is an integration of the conventional 
spatial and temporal databases into a single structure. To do this, 
we propose a relational spatio-temporal data model, called a 
relational spatio-temporal data model (RSTDM), which can 
handle all time-varying location data and provide a framework 
for integrating spatial and temporal relationship operators into the 
select statement of SQL3. Our research on the integration of the 
spatial and temporal relationship operators into SQL3 for 
historical data management includes describing a history 
aggregate operator as retrieving all the spatial and non-spatial 
histories of objects and three referencing macros―Spatial, Valid, 
and Transaction―as extracting different dimensional 
information. We also classify the existing spatial and temporal 
relationship operators into three groups: exclusively spatial 
relationship operators, exclusively temporal relationship 
operators, and spatio-temporal common relationship operators. 
While Worboys [20] proposed only a logical unified model of 
spatio-temporal relational algebra, our spatio-temporal data 
model will provide a unification of the spatial and temporal 
relationship operators into the select statement of SQL3. 

The remainder of this paper is organized as follows. In 
section II, we describe major spatial event operations that cause 
the spatial objects to change their states. Section III presents a 
framework for the proposed spatio-temporal database scheme 
and reviews the history management by major spatial event 
operations. Section IV outlines procedures to integrate the 
existing spatial and temporal relationship operators into SQL3, 
and section V designs the history aggregate operator. Finally, 
sections VI and VII present a summary of our research. 

II. MAJOR SPATIAL EVENT OPERATIONS 

Events are things that occur [6]; events are also happenings 
of interest to the environment and/or to database systems. For 
database systems, events are modeled as a set of processes 
that transform the states of entities. In this paper, spatial 
events are defined as the transactions, operations, and actions 
that cause the spatial or non-spatial value of spatial objects to 
change in a database. For information about spatial events, 
there are two kinds of event operations―non-spatial 
operations and spatial event operations―that can change the 
states of spatial objects. 

For example, a parcel may be purchased and owned by 
people whose address and telephone number, called attribute 
data, may change over time. These events, which make up 
the historical information of spatial objects, are called non-
spatial event operations. They are treated as important 
activities in spatio-temporal databases because they create 
many historical objects and store them permanently in the 
database. Existing spatial databases cannot manage the 
historical objects, so spatio-temporal databases must be used 
to store them in the database to maintain all the historical 
information for the spatial objects. Figures 1(a) through (c) 
are examples of non-spatial event operations that change only 
attribute data, such as a parcel’s ownership and address, in 
which its historical objects are created and then stored in the 
database as historical objects. 

Spatial operations are both the simple and complex events 
that change the size, area, or location of an object, called spatial 
attributes. Here, the spatial operations are categorized into 
simple and complex spatial event operations. Simple events 
refer to simple spatial event operations, such as creating and 
deleting a new object, and complex events refer to complex 
spatial event operations, such as merging, splitting, and re-
allocating, the so called major spatial event operations. Thus, 
all spatial event operations either change the size or area of 
objects or move them. For example, a spatial object can be 
moved and its shape and size can also vary according to the 
geological scale. In spatio-temporal databases, operations 
generate one historical object or more. 

Let us consider the major spatial event operations―create, 
delete, move, split, merge, and re-allocate―as follows: 

Create Operation: For example, a new highway may be 
constructed in a space. As Fig. 1(d) shows, a newly created 
object can be stored in the database and it will be described as 
an insertion operation. No historical objects will be generated. 

Delete Operation: After being constructed as a need, a 
building or a road may be destroyed. Figure 1(e) shows that a 
spatial object is deleted from the current databases and then 
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Fig. 1. Major spatial event operations. 
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(i) Reallocating(h) Merging(g) Splitting 

(a) Changing ownership (b) Changing owner’s address (c) Changing other attributes 

 
creates a historical object. Note that conventional databases do 
not manage the historical information of the objects; however, 
such history management is necessary in a full-functioning 
spatio-temporal database. 

Move Operation: Figure 1(f) shows that the location of a 
spatial object is moved without any changes in either its non-
spatial or spatial information. The move operation is 
processed by updating a current object and creating its 
historical object because the operation changes its location 
information. For moving objects, all the paths of a movement 
at an event time are stored in spatio-temporal databases as 
historical information. 

Figures 1(d) through (f) illustrate simple spatial event 
operations that change only the spatial information of objects, 
such as creating, deleting, or moving. However, three major 
spatial event operations―split, merge, and re-allocate―are 
complicated spatial operations which change spatial 
information, such as size, area, and feature points. The 
complicated spatial event operations will be explained by 
examples of spatio-temporal operations in section III.2. 

Split Operation: A split operation indicates that an object, 
such as a parcel, is divided into two or more pieces (Fig. 1(g)). 
Thus, the object changes its size, area, and geometry. The split 
operation is explained by creating current objects and creating a 
historical object (Fig. 1(g)). 

Merge Operation: A merge operation (Fig. 1(h)) is where 
some parcels are combined into an object, creating a new 
spatial object. This creates a merged spatial object and several 
historical objects as parent objects. In this case, there is a 
problem of managing the historical objects, because the spatial 
object has two or more historical objects. 

Re-allocate Operation: It is necessary to rearrange spatial 
objects to construct a building or to do a land readjustment in a 
city. In these cases, many spatial historical objects are created 
whenever the size, area, or location of objects changes. Spatio-
temporal databases have to be able to store and retrieve the 
historical information. The reallocate operation shown in Fig. 
1(i) rearranges the size, location, or area of spatial objects as 
needed. It also creates the same number of current spatial 
objects and their historical objects. 

III. A RELATIONAL SPATIO-TEMPORAL DATA 
  MODEL 

In this section, we describe our design of a relational spatio-
temporal data model (RSTDM), which can manage all time-
varying spatial and non-spatial information. The data sets that 
capture all time-varying location data are grouped into logical 
units, depending upon different working granularity. At the 
highest level of work granularity is a data set that logically 
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groups discrete geographical, tabular, and other attribute 
information on spatial objects. The next level of granularity is a 
layer. Each data set can contain multiple layers that are separate 
base maps, but are not partitioned geographically. The layer 
therefore contains a lot of similar thematic data. The lowest 
level of granularity has features called spatial objects. 

Each layer in our spatio-temporal data model consists of five 
relations: Feature Relation, Attribute Relation, Feature History 
Relation, Attribute History Relation, and Merge Relation. All 
the historical information of spatial objects in one layer is 
stored under Feature History Relation and Attribute History 
Relation. The Merge Relation contains all the historical 
information of merged objects. The attribute histories for an 
object are managed under its own history relations. It is 
beneficial to separate current features from their historical 
objects because all the historical information of features can be 
managed independently. A framework of the spatio-temporal 
data model is described completely in Definition 1 and 
Definition 2. Table 1 also shows the notation for modeling our 
spatio-temporal data model. 
 

Table 1. Notation for modeling the spatio-temporal databases. 

Notation Descriptions 

Ui 
Di 
Li 
Sti 

fid, hid 
Fi 

FG 
FA 
A 
M 
A 

VT 
TT 

Prev 
T 
' 
" 

Universal set 
A data set i 
A layer i 
A spatio-temporal object i 
A feature identifier 
Feature i 
Geometry for a feature 
Spatial vector for a feature, <A, VT, TT, prev> 
Attribute vector for a feature, <a1, a2, ..., am> 
Merge relation 
An attribute 
A valid time period <VTs, VTe> 
A transaction time period < TTs, TTe> 
Previous historical pointer for a feature 
Timestamp 
a current relation 
a history relation 

 
 

 
Definition 1 (Spatio-Temporal Database Hierarchy) 

Suppose that U, D, L, and sto are a universal set, a data set, a 
layer, a spatio-temporal object, respectively. A universal set U 
is divided into multiple data sets {D1, D2, D3, ... , Dm} 
associated with the object’s themes. A data set D is composed 
of many layers, {L1, L2, L3, ... , Ln}, and each layer Li consists 

of a Feature Relation and an Attribute Relation for current 
objects, and a Feature History Relation, an Attribute History 
Relation, and a Merge Relation for their historical objects. The 
relationship between the Feature Relation and Attribute 
Relation is associated with the equi-join operation of feature 
identifiers (fid). In addition, the relationship between the 
Feature and Attribute Relations and the Feature and Attribute 
History Relations is connected with the historical information 
of the Attribute Relation and Attribute History Relation. Each 
relation involves many spatio-temporal objects, {sto1, sto2, 
sto3, ... , ston}. 

Next, a layer is composed of a Feature Relation and an 
Attribute Relation which separately express the current spatial 
and non-spatial data for spatial objects. As described in 
Definition 2, it also includes a feature history relation and an 
attribute history relation for historical objects. 

Definition 2 (Spatio-Temporal Database Scheme) The 
Feature Relation Fi’ and Feature History Relation Fi” for the i-
th layer describe a vector of spatial data, <fid, f1, f2, ... , fn, FGi>, 
where fid represents identifier, f1, f2, ... , fn spatial data and FGi 
geometry. The Attribute History Relation FAi” for the i-th layer 
presents an attribute vector of non-spatial data, <Ai, VT, TT, 
prev>, where a valid time vector VT = <VTs, VTe> and a 
transaction time vector TT = <TTs, TTe> denote the beginning 
and ending times of the valid time and transaction time, 
respectively. Prev is also a historical pointer of a feature in a 
historical relation, and Ai is an attribute vector for the spatial 
object of the i-th layer, <fid, a1, a2, ... , am>. On the other hand, 
the Attribute Relation FAi’ for the i-th layer is described only 
by an attribute vector of non-spatial data, <Ai, VTs, TT, prev>. 
The Merge Relation Mi describes a historical pointer vector of 
merged objects, <fid, hid, VT>, where hid denotes the 
historical pointer of a spatial object fid in the Feature History 
Relation. A Merge Relation stores only historical information 
of spatial objects on which the merge operation occurs. 

Note that the structures of Attribute Relation FAi’ and 
Attribute History Relation FAi” in Definition 2 are different. 
VT is the time period when a spatial object is true in reality, and 
transaction time TT is a pair of timestamps in which a spatial 
object was present in the database. The time domains of the 
valid time are {t1, t2, t3, ... , tk, now} and those of the transaction 
time are {t1, t2, t3, ... , tk}∪{UC}, where UC is “Until 
Changed” [17]. 

To summarize, the proposed model represents the current 
state of a spatial object by a spatial vector <fid, f1, f2, ... ,fn, FGi> 
and an attribute vector <Ai, VTs, TT, prev> in the Feature 
Relation Fi’ and Attribute Relation FAi’. Any historical object is 
stored by a spatial vector <fid, f1, f2, ... , fn, FGi>, an attribute 
vector <Ai, VT, TT, prev>, and an optional merge vector <fid, 
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Fig. 2. Structure of relational spatio-temporal data model. 
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hid, VT> in the Feature History Relation Fi”, Attribute History 
Relation FAi”, and Merge Relation Mi, respectively. Here, 
examples of a feature’s spatial attributes vector <f1, f2, ... , fn> 
are a feature identifier (fid), MBR (Minimum Rectangle 
Boundary), area, length, perimeter, etc., and sample non-spatial 
attributes of the spatial object <fid, a1, a2, ... , am> are owner, 
address, and telephone number (Fig. 2). In other words, a 
spatio-temporal object is an integrated object whose periods of 
valid and transaction timestamps are attached to the object. 
Thus, the Attribute History Relation in the proposed spatio-
temporal databases is extended by bi-temporal elements, called 
valid times and transaction times, and a historical pointer (prev) 
to represent time-varying spatial historical information. 

The structure of the proposed spatio-temporal database is 
shown in Fig. 2. The spatial world is modeled by lots of layers 
(or themes). Each layer is described by two relations—Feature 
Relation and Attribute Relation—for current spatial objects and 
by three relations—Feature History Relation, Attribute History 
Relation, and Merge Relation—for their historical objects. A 
merged object’s histories are retrieved from the historical 
identifier with the valid time period in the Merge Relation. 
Therefore, all the histories for a current object can be retrieved 
from its historical pointer of the Attribute Relation directly or 
from its merged identifiers of the Merge Relation. 

In the above expression, the merge relation {<fid, hid, VTs, 
VTe>} indicates an optional table which has historical information 

 
information for the merge objects. The following section 
reviews the relational spatio-temporal databases through major 
spatial event operations that generate spatial historical 
information. The major spatial event operations will be 
performed by combinations of database operations, such as 
insert and update, without any deletion. 

IV. INTEGRATION OF SPATIAL AND 
   TEMPORAL RELATIONSHIP OPERATORS 

A spatio-temporal database manages four- or five-
dimensional information of spatial objects in addition to two- 
or three-dimensional spatial data and two-dimensional 
historical information with a valid time and a transaction time. 
A spatio-temporal database requires extensions of data types 
and query language in SQL3. Three previous studies on spatial 
and temporal queries only addressed the need to merge space 
and time and to allow the handling of the spatial and temporal 
references in a uniform fashion to produce a conceptually 
flexible language [6], [20], [29]. 

However, no studies have tried to resolve the problem of 
integrating spatial and temporal relationship operators into 
SQL3. We therefore focus on merging the topological 
comparison operators, called spatio-temporal relationship 
operators, for spatial and temporal queries to handle meets, 
overlaps, contains, equals, and so on. In order to integrate these 
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spatial and temporal relationship operators in SQL3, we first 
define three referencing macros: Spatial, Valid, and 
Transaction. We then classify the existing spatial and temporal 
relationship operators into three groups: exclusively spatial 
relationship operators, exclusively temporal relationship 
operators, and spatio-temporal common relationship operators. 
In the following sections, we describe them in detail. 

1. Spatio-Temporal Referencing Operators 

The aim of the proposed spatio-temporal referencing 
operators is to integrate the spatial and temporal relationship 
operators into SQL3 in a uniform fashion. In spatio-temporal 
databases, it is necessary to define three operators that reference 
the different dimensional information of a spatial object, 
because the operands of spatio-temporal relationship operators 
can be either a spatial or a temporal object, depending on the 
user’s query statement. In this section, we therefore define three 
referencing operators of spatio-temporal data―spatial, valid, 
and transaction―in Definitions 1 through 3, where i, m, and n 
are natural numbers. 

First, the spatial operator is used for indicating geometric 
information of a tuple from either current spatial objects or 
historical objects. It is defined as follows: 

Definition 1 Object.spatial = {(x1,y1, …, xn,yn) | a 
feature’s geometric information FGi from spatial attributes, 
Fi of a current object <fid’, F1’, F2’, ... , Fn’, FG’i> and a 
history object <fid”, F1”, F2”, ... , Fn”, FG”i>}, where the 
feature’s geometric information indicates the real-world 
coordinates of a spatial object. 

For example, there is an explicit spatial reference, such as 
schools.spatial, where the school in the spatio-temporal 
database may be a layer relation. It is similar to the valid 
timestamp reference operator in temporal databases [21], [22], 
[29]. 

Second, the valid operator references the valid time of a 
spatial object, which indicates a pair of valid timestamps for a 
tuple from which an object is true in reality. It is defined as 
follows: 

Definition 2 Object.valid = {[ VTs, VTe] | valid timestamps 
<VTs, VTe>, which indicates the beginning to ending time 
period of a valid time VT from attribute data of either a current 
object <A’, VT’, TT’, prev’> or a history object <A”, VT”, TT”, 
prev”>. 

Next, the transaction operator is used for referencing a pair 
of transaction timestamps of an object. 

Definition 3 Object.transaction = {[TTs, TTe] | transaction 
timestamps <TTs, TTe>, which indicates the beginning and 
ending time period of transaction time TT from attribute data of 

either a current object <A’, VT’, TT’, prev’> or a history object 
<A”, VT”, TT”, prev”>. 

Table 2 summarizes the spatial and temporal referencing 
operators. There are only three possible combinations of spatio-
temporal reference operators for the spatio-temporal query 
expressions―spatial/spatial, valid/valid, transaction/trans-
action―since the referencing operators between valid time and 
transaction time cannot be exchanged. However, it is not 
necessary to combine with elements such as valid/transaction 
and transaction/valid because the valid dimension is different 
from the transaction dimension. 

Table 2. Spatio-temporal referencing operators. 

     Use 
Operators 

Examples of use 

Spatial 
- a.spatial disjoints b.spatial 
- b.spatial contains a.spatial 
- a.spatial overlaps b.spatial 

Valid 
- a.valid precedes Timestamp 'Nov-31-1998' 
- a.valid meets b.valid 

Transaction 
- a.transaction contains PERIOD 'Jan-01-1998, 
 Nov-31-1998' 

 
 

2. Exclusively Spatial Relationship Operators 

Existing spatial databases contain many relationship operators 
for comparing the spatial topological relationships among 
spatial objects. These spatial relationship operators include the 
following: common point, line cross, common line, area 
intersect, disjoints, point in polygon, contains or is_contained, 
centroid inside polygon, inside envelope, overlaps, meets, and 
equals. 

This paper classifies the general spatial relationship operators 
into two groups: spatio-temporal common relationship 
operators and exclusively spatial relationship operators. The 
exclusively spatial relationship operators include common point, 
line cross, area intersect, point in polygon, centroid inside 
polygon, and inside envelope for only spatial use. 

3. Exclusively Temporal Relationship Operators 

Allen [30] proposed a complete set of period relations, which 
included before, after, starts, started_by, finishes, finished_by, 
during, contains, meets, met-by, equals, overlaps, and 
overlapped_by. This paper separates temporal relationship 
operators, defining exclusive temporal relationship operators as 
only specific time-comparison operators; these include before, 
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after, starts, finishes, finished_by, during, met_by, and 
overlapped_by. The other category of temporal relationship 
operators is the spatio-temporal common relationship operators. 

The exclusive temporal relationship operators are 
implemented by converting their semantics into relational 
expressions. For example, the equals operator should be 
translated into a relational expression of valid time “VTs > 
begin and VTe = end” in spatio-temporal databases. 

4. Spatio-Temporal Common Relationship Operators 

It is necessary to define some macros for referencing the 
dimensional information of an object in spatio-temporal 
databases. We therefore defined spatial and timestamp 
referencing macros (Definitions 1–3). The operand of a spatio-
temporal relationship operator can be either a spatial or a 
temporal object associated with a query statement. Table 2 
shows the macros, spatial, valid, and transaction, which are an 
extraction of geometry, valid time, or transaction time from a 
spatio-temporal object, respectively. 

It is possible to employ a prefix function-style notation for 
reference macros or a postfix notation; we adopted the postfix 
notation according to the conventional query expression rules 
of SQL3. In addition, the spatio-temporal reference macros 
should be connected with the proposed spatio-temporal 
common relationship operators.  

As Table 3 shows, the third group is the spatio-temporal 
common relationship operators whose operands can be either 
spatial or temporal objects. The topological relationship 
operators may be used in conjunction with the dimensional 
reference macros, spatial, valid, and transaction. Thus, each of 
the spatio-temporal common relationship operators can be 
operated differently as either a spatial or temporal relationship 
operator, depending upon its operands. There are possible 
combinations of spatio-temporal reference macros with spatio-
temporal relationship operators for query expressions (Table 3). 
For example, it is only possible to combine either spatial 
 

reference operands or temporal reference operands, such as 
Spatial/Spatial, Valid/Valid, Transaction/Transaction. At this 
point, it is also important to define clearly whether the 
timestamp is a valid time or a transaction time because they are 
not interchangeable. The possible search expressions of a 
spatio-temporal query will yield a Boolean value such as true 
or false. As a result, spatial and temporal relationship operators 
in the select statement of SQL3 can be integrated in a uniform 
fashion by defining three reference macros and classifying 
existing topological relationship operators into three groups: 
exclusively temporal relationship operators, exclusively spatial 
relationship operators, and spatio-temporal common 
relationship operators. 

V. HISTORY AGGREGATE OPERATOR 
Existing relational database management systems (RDBMSs) 

support five aggregate functions: count, sum, avg, min, and max. 
Since the spatio-temporal databases provide the history 
management of spatial objects, it is necessary to design a new 
aggregate function that can retrieve all the historical information 
of an object automatically. To this end, we designed a history 
aggregate operator as follows. 

1. What is the History Aggregate Operator? 

A spatial object in a spatio-temporal database is represented 
by spatial data, non-spatial data, valid and transaction time 
periods, and its historical pointers. Among these data, 
geometric information, owners, and addresses of a spatial 
object change over time when an event occurs. The spatial 
object has its historical objects of either spatial or non-spatial 
data. To handle changes of state over time, we propose a 
history operator to retrieve all the historical interrogations of a 
spatial object (Definition 4). 
 

Definition 4 A history aggregate operator is a selection 
operation in which all the histories of either the spatial or non- 
 

Table 3. Usage of the spatio-temporal common relationship operators 

Spatio-temporal relationship operators Spatial use Temporal use 

Meets - a.spatial meets b.spatial - a.valid meets b.valid 
- a.transaction meets b.transaction 

Overlaps - a.spatial overlaps b.spatial - a.valid overlaps b.valid 
- a.transaction overlaps b.transaction 

Contains - b.spatial contains a.spatial - b.valid contains a.valid 
- b.transaction contains a.transaction 

Equals - a.spatial equals b.spatial - a.valid equals b.valid 
- a.transaction equals b.transaction 
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spatial data of an object are extracted from a spatio-temporal 
database. The processing results may include many historical 
objects or be empty, depending on the object states. Figure 3 
describes how an algorithm of the history operator is defined. 
 

Procedure history(int fid, designated attribute type) 
Input: feature identifier fid, designated attribute type 
Output: feature’s spatial, non-spatial historical information or both 
Step 1. Identify input features from the window; 
Step 2. Check current read mask from its feature layer; 
Step 3. If (the current layer is not readable) 

          Set the read mask of the current layer into readable; 
Step 4. Read the feature id from current feature layer and its previous pointer; 
Step 5. If (its previous pointer = merge) 

          Retrieve all of its previous pointers; 
          For each previous pointer, call history (int hid, designated attribute type); 

Step 6. for (; its previous pointer != NULL; ) { 
          Switch (designated attribute type) { 
            Case NONSPATIAL : 
               Extract the attribute historical record of the feature fid; 
            Case SPATIAL : 
               Extract the previous spatial history of the feature fid; 
         } /* switch statement */ 
         Reset current previous pointer into its previous pointer; 
       } /* for statement */ 

Step 7. Stop; 
 

Fig. 3. Processing strategy of history aggregate operator. 
 

 
As described in the spatio-temporal reference macros above, 

we also adopt a postfix notation as an interface with the history 
operator. There are two kinds of interfaces in the select 
statement of SQL3: One is the attribute history of the spatial 
object in the GIS and the other is the spatial history of objects 
designated by spatial attributes. A spatial object in spatio-
temporal databases is handled as a tuple. The efficiency and 
convenience of use for the history operator is explained 
through the following queries: 

Example 1  List all histories of the owners who owned the 
lot number of building 100. 

SQL3> SELECT o.nonspatial.HISTORY 
     > FROM buildings b, owners o 

> WHERE b.lotNumber = 100 and o.fid = b.fid ; 

Example 2  List all the spatial histories of a building whose 
lot number is 100, where the spatial histories may be geometric 
real-world coordinates of its historical objects. 

SQL3> SELECT *.spatial.HISTORY 

     > FROM buildings 
     > WHERE fid = 100; 
Frequently, we may need to interrogate all spatial or non-

spatial histories of designated objects. To do this, we suggest 
a history operator having an interface with the postfix 
notation as we described above. In our proposed spatio-
temporal database, all the historical information for spatio-
temporal objects can be retrieved by their historical 
information in the Attribute Relation and Attribute History 
Relation. This is possible because all the histories of either 
their spatial or non-spatial data are managed in the spatio-
temporal database. Therefore, spatio-temporal queries can be 
expressed economically by using the proposed reference 
macros and the history aggregate operator, as we show in the 
following examples. Queries of examples 3, 4, and 5 below 
are examples in which the spatial and temporal relationship 
operators are integrated into the select statement of SQL3 in 
a uniformed manner. In addition, we can express all 
historical interrogations of either spatial or non-spatial data 
as follows: 

Example 3  Retrieve all the moving paths of a car ‘Seoul 
4Ro-6179’ on May 1, 1998. 

SQL3> SELECT *.spatial.HISTORY 
     > FROM Vehicle v 
     > WHERE v.cno = ‘Seoul 4Ro-6179’ and 
        v.valid overlaps PERIOD 
              ‘01-May-1998, 01-May-98’; 

Example 4 List all owners and their address histories of 
building ‘Jongro-gu A’ since 1990. 

SQL3> SELECT b.owner.HISTORY, b.address.HISTORY 
     > FROM Buildings b, County c 
     > WHERE b.name = ‘A’ and 
        c.county = ‘Jongro-gu’ and 
        c.spatial adjacent b.spatial and 
        b.valid overlaps PERIOD ‘01-Jan-90, 
              CURRENT_DATE’; 

Example 5  List all of the spatial histories of buildings 
adjacent to building ‘Jongro-gu A’ since 1990. 

SQL3> SELECT b.spatial.HISTORY 
     > FROM Buildings b, County c 
     > WHERE b.name = ‘A’ and 
        c.county = ‘Jongro-gu’ and 
        b.spatial is_constained c.spatial and 
        b.spatial meets c.spatial and 
        b.valid overlaps PERIOD ‘01-Jan-90, 
              CURRENT_DATE’; 
In the spatial case (Example 5), the query results will be 

visualized on maps in windows. Otherwise, the historical 

ETRI Journal, Volume 24, Number 3, June 2002  Jong-Yun Lee   233 



attribute data can be viewed in tables having attributes with 
valid and transaction times. 

2. The Search Statement for Spatio-Temporal Data 

For any spatio-temporal database, we must define the data 
definition language and data manipulation language for the 
spatio-temporal data. In our system, we extend the following 
search statement in SQL3 by spatio-temporal reference macros, 
exclusive spatial relationship operators, exclusive temporal 
relationship operators, spatio-temporal common relationship 
operators, and the history aggregate operator in a uniform 
manner. 

   SELECT <attribute list> 
   FROM <relation list> 
   WHERE <attribute qualifications> 
The following are examples of attribute qualifications for 

typical spatio-temporal queries. The attribute qualifications 
on the “where” clause may be combined with other attribute 
predicates, which are similar to the previous query 
expressions in SQL3. 

   <Temporal relationship operators> 
       a.valid overlaps b.valid 
       c.valid precedes 
          PERIOD ‘01-Jan-1997, 31-Oct-1997’ 
   <Spatial relationship operators> 
       a.spatial overlaps b.spatial 
       b.spatial contains a.spatial 
A brief BNF notation of a search statement for a spatio-

temporal database extended by the spatio-temporal 
relationship operators and reference macros in SQL3 is 
described in APPENDIX. The conventions used to interpret 
the syntax rule are as follows: [] means it is required, {} is 
optional, and a bar (|) indicates OR. Lines (2)-(3) of the 
appendix are executed the same as in SQL2, but lines (1) and 
(4)-(6) in the “where” clause must be extended to retrieve 
spatio-temporal data. Thus, spatial, temporal, and spatio-
temporal patterns can be handled in a uniform manner in the 
proposed spatio-temporal queries. 

VI. REVIEWS OF CONTRIBUTIONS 

In this section, we consider an implementation of the 
proposed spatio-temporal database scheme and review our 
research results as well. 

1. Evaluation of Implementation Results 

In the majority of temporal extensions to the relational model, 
valid and transaction times can be represented as a single 

chronon, sets of consecutive chronons, and arbitrary sets of 
chronons. In our approach, we represent the structure of valid 
and transaction times as a pair of points (begin, end) to 
provide the same query processing algorithm of the 
conventional relational model as described by Allen [30]. 
New tuples are added to the database by a tuple-level 
versioning method whenever any attribute of a spatial object 
is changed. 

In this paper, we proposed a relational spatio-temporal data 
model, which is extended by valid time, transaction time, 
and a historical pointer of the spatial data model, called SDE 
[32]. As illustrated in Tables 2 and 3, we described the 
semantics and uses of spatio-temporal relationship operators 
and reference macros. The spatio-temporal relationship 
operators in SQL3 are then classified into the existing spatial 
and temporal relationship operators into three groups: 
exclusively spatial relationship operators, exclusively 
temporal relationship operators, and spatio-temporal 
common relationship operators. They were implemented by 
a layered approach with Oracle DBMS 7.2.3 and SDE 2.1 
on Solaris 2.5. 

Next, let us review the processing results of spatio-temporal 
queries in the databases. 

Example 6  Find all the histories of a feature ‘201’ since 
1990 from the layer ‘Parcel’ of Table 4. 

SQL3> SELECT *.HISTORY 
     > FROM Parcel p 
     > WHERE fid = 201 and 
          p.Valid overlaps PERIOD 
          ‘01-Jan-1990, CURRENT_DATE’; 
The above query processing starts with retrieving a current 

object ‘201’ from the Feature Relation ‘Parcel’ and then 
continues with the previous pointer of the current record. 
Here, the history information is obtained from the Merge 
Relation ‘Parcel_merge’ because the previous pointer of 
object ‘201’ is Merge, so two historical records, ‘200’ and 
‘300,’ are obtained from the Merge Relation. With the 
historical records of ‘200’ and ‘300,’ each of all the histories 
of ‘200’ and ‘300’ are retrieved from the Feature History 
Relation repeatedly until their previous pointers are Null. 
Finally, we can see the query results of Example 6 computed 
from Table 4 as follows: 

Result = { 
 (201, Polygon, (0, 0, 200, 0, 200, 100, 0, 100), 

 ‘01-Nov-97, Now’, Merge), 
   (200, Polygon, (0, 0, 100, 0, 100, 100, 0, 100), 
        ‘01-Mar-81, 31-Oct-97’, Null), 
   (300, Polygon, (100, 0, 200, 0, 200, 100, 100, 
        100), ‘01-Mar-81, 31-Oct-97’, Null)}; 
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Table 4. Example of a layer ‘Parcel’ in spatio-temporal databases. 

fid Type Geometry VTs Prev  fid hid 
101 Polygon (0, 0, 100, 0, 100,100, 0,100) 01-Jun-96 100  201 200 
102 Polygon (100,0,200, 0,200,100,100,200) 01-Jun-97 100  201 300 
201 Polygon (0, 0, 200, 0, 200,100, 0,100) 01-Nov-97 Merge  
400 Polygon (0, 0,100, 0, 100,100, 0,100) 01-May-98 400-1  
500 Polygon (100,0,200,0, 200,100,100,100) 01-May-98 500-1  

(c) Parcel_merge 

 (a) Parcel relation 

hid Type Geometry VTs VTe Prev   

100 Polygon (0, 0, 200, 0, 200, 100, 0,100) 01-Mar-81 31-May-96 Null   
200 Polygon (0, 0, 100, 0, 100, 100, 0, 100) 01-Mar-81 31-Oct-97 Null   
300 Polygon (100, 0, 200, 0,200,100,100,100) 01-Mar-81 31-Oct-97 Null   

400-1 Polygon (0, 0, 150, 0, 50, 100, 0, 100) 01-Mar-81 31-Apr-98 Null   
500-1 Polygon (150, 0,200, 0, 200,100,50,100) 01-Mar-81 3-Apr-98 Null   

(b) Parcel history relation   
 

2. Comparisons of Previous Work 

With major spatial event operations related to the history of 
an object, this paper presented the spatio-temporal data model, 
called ORSTDM and showed how to integrate the existing 
spatial and temporal relationship operators into the select 
statement of SQL3. Comparing our work with previous 
studies on spatio-temporal database systems, our contributions 
can be summarized as follows: 

Integrating the Existing Spatial and Temporal 
Relation-ship Operators into SQL3 in a uniform fashion. 
Previous studies on spatial and temporal databases proposed 
many spatial and temporal relationship operators, including 
disjoint, contains, inside, equal, meet, cover, covered_by, and 
overlap between two connected spatial objects in two 
dimension space [31] and before, equals, meets, overlaps, 
during, starts, and finishes [30] in interval comparison 
operators. There has been no previous research result on 
unifying the spatio-temporal queries of SQL3 for information 
that has spatial and temporal components. Clalamunt [6] and 
Worboys [29] addressed only the needs of conceptually 
handling the spatial and temporal references in a uniform 
fashion. In this paper, however, we completely solved the 
problem of a unifying topology computation for different 
dimensions. The spatial relationship operators can integrate 
with the temporal relationship operators in the select 
statement of SQL3 by classifying the conventional spatial and 
temporal relationship operators into exclusively spatial 
relationship operators, exclusively temporal relationship 
operators, spatio-temporal common relationship operators, 
and defining three reference macros, Spatial, Valid, and 

Transaction. 
In other words, we designed spatio-temporal relationship 

operations, including the reference macros, for extracting 
either spatial or temporal information, and classified the 
existing spatial and temporal relationship operators into three 
groups. In this way, we could actually unify the spatio-
temporal relationship operators in SQL3, which have 
traditionally been handled by the different methods depending 
on the spatial or temporal queries, and simply express the 
spatio-temporal queries. Thus, all discrete time-varying 
historical information of spatial objects could be handled in a 
uniform method. However, there are complex spatio-temporal 
phenomena such as wildfire, that cannot be fully represented 
in this paper and these phenomena will require a continuous 
time model. 

Defining the New History Aggregate Operator for 
Spatio-temporal Databases. We designed the new History 
aggregate operator to retrieve all the historical information of 
designated objects from stored spatio-temporal databases. It 
can be easily used in the select statement to represent a 
historical query, as the queries of examples 1 through 6 
illustrate. In addition, all the histories of spatial objects in 
spatio-temporal databases can be retrieved through the 
History aggregate operator in SQL3 without constructing any 
application programs. 

Enhancing the Expression Power of a Spatio-Temporal 
Query. As an example, Fig. 4(a) shows how the conventional 
spatial retrieval query language in SDE [32] is expressed. 
However, it can be described in a uniform fashion by using the 
exclusively spatial relationship operator, an exclusively 
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temporal relationship operator, and spatio-temporal reference 
macros (Fig. 4(b)). This Figure shows how any spatio-temporal 
query can be expressed very efficiently without losing any 
spatial analysis information, and how the expression power of 
spatio-temporal queries in SQL3 is improved. 

In particular, the spatio-temporal queries with spatial and 
temporal search conditions in previous work on spatial and 
temporal databases cannot be described in the select 
statement of SQL3. For example, as Fig. 4(b) illustrates, 
spatio-temporal queries with spatial and time relationship 
operators cannot be integrated in existing spatial and temporal 
databases. 

Notice that most of the spatio-temporal queries with spatial 
and temporal predicates cannot be described at the same time 
in the select statement of SQL2 (Fig. 5). However, with the 
select statement of SQL3, we solved those problems 
 

completely by defining three reference macros and classifying 
the existing spatial and temporal relationship operators into 
three different groups: exclusively spatial relationship operators, 
exclusively temporal relationship operators, and spatio-
temporal common relationship operators. 
 

Designing a Unified Relational Spatio-Temporal Data 
Model. Above all, this paper proposed a relational spatio-
temporal data model, called ORSTDM, in which spatial data 
actually integrates temporal data by extensions of time 
intervals, called valid and transaction times, and a historical 
pointer. The ORSTDM can manage and retrieve all historical 
information of objects by which spatial event operations 
occur. 

This model provides more practicable solutions than the 
previous spatio temporal data models [6], [18] because it can be 
 

 

Feature zonef, bldgf;                              
Zonelayer = s100;  
Bldcnt = 0; 
For (ret = SE_get_feature_by_layer(zonelayer, &zonef,  

Zone= COMMERCIAL); ret = SUCCESS;   
Ret = SE_get_next_feature(&zonef))  {      /* for */ 

SE_set_search_by_feature(&zonef);   
For (returncode=SE_search(bldlayer, SM_AI, &bldgf,  

USE=RESIDENTAL, VTs >= 01-Jan-96 and     
VTe < 31-Dec-97); ret= SUCCESS; ret =        
SE_next_search(&bldgf))                    

Bldcnt++; 
} /* outer loop */ 

(a) A spatio-temporal query in SDE 

SQL3> SELECT T.spatial, count(*) 
FROM s100 S, s100 T 
WHERE S.zone = COMMERCIAL and 

T.USE = RESIDENTAL and 
T.spatial intersects S.spatial and 
T.valid overlaps PERIOD ‘01-Jan-96, 31-Dec-97’; 

 
 
 
 
 
 

 
(b) A spatio-temporal query in SQL3 

Fig. 4. Comparison of query representations in SDE and SQL3. 

 

 

Items Case of overlapping spatially and temporally Case of overlapping spatially and 
meeting temporally 

SQL2 

SELECT *.geometry, count(*)    
FROM relation S, relation T 
WHERE S.fid = 100 and  
 S overlaps T and     // cannot describe 
 S overlaps PERIOD ‘01-Jan-96, 31-Dec-97’; 

SELECT * 
FROM relation S, relation T 
WHERE S.fid = 100 and  
   S overlaps T and  // cannot describe 
   S meets T;       // cannot describe  

SQL3 

SELECT *.spatial, count(*)    
FROM relation S, relation T 
WHERE S.fid = 100 and  
 S.spatial overlaps T.spatial and  
 S.valid overlaps  
        PERIOD ‘01-Jan-96, 31-Dec-97’; 

SELECT *  
FROM relation S, relation T 
WHERE S.fid = 100 and  
 S.spatial overlaps T.spatial and   
   S.valid meets T.valid; 

Fig. 5. Comparison of spatio-temporal query representations in SQL2 and SQL3. 
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used as a tool for history management of spatial objects directly 
without any changes. Finally, we can summarize our model as 
follows: the proposed spatio-temporal database system 
integrates the spatial, temporal, and spatio-temporal 
relationship operators into SQL3 in a uniform manner and at 
the same time supports all historical interrogation of spatio-
temporal data. 

VII. CONCLUSIONS 

The features of spatio-temporal data in the real world vary 
over time; these features are managed in a GIS. However, 
conventional GIS software cannot handle time-varying data 
because it neither controls the historical information of spatial 
objects nor supports their spatio-temporal operations. 
Furthermore, previous spatio-temporal data models and query 
language cannot handle all the history management of spatial 
objects. 

To overcome the limitations of previous models, we 
suggested the spatio-temporal database scheme, spatio-
temporal relationship operators, and a history aggregate 
operator to support historical queries in SQL3 and to support 
all historical interrogation of spatio-temporal data from users. 
We also described spatio-temporal reference macros for 
extracting the designated dimensional information of spatio-
temporal data, as well as a brief BNF statement of insert and 
search statements in SQL3, which are extended by data types, a 
time clause, and our proposed spatio-temporal operations for 
spatial and temporal use. We then implemented our designs 
and demonstrated them by examples of spatio-temporal queries. 
In the future, we will study spatio-temporal indices and spatio-
temporal join processing algorithms to further support 
convenient query processing. 
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APPENDIX: A brief BNF description for the spatio-
temporal search statement 

SELECT <extended attribute list>  (1) 
FROM <relation list>  (2) 
WHERE <attribute qualifications>;  (3) 
<attribute qualifications> 

::= [object.valid <exclusively temporal relationship operators> 
 <valid timestamp reference expressions>] |  (4) 

     [object.transaction <exclusively temporal 

       relationship operators> <transaction timestamp 
 reference expressions> | (5) 

     [object.spatial <exclusively spatial relationship 
operators> object.spatial] ;  (6) 

<valid timestamp reference expressions> 
::= object.valid | timestamp expressions; 

<transaction timestamp reference expressions> 
  ::= object.transaction | timestamp expressions; 
<timestamp expressions> 
  ::= Timestamp ‘<datetime>’ |  
     PERIOD ‘<datetime> - <datetime>’; 
<exclusively spatial relationship operators>  
  ::= DISJOINTS | IS_CLOSEST | IS_SHORTEST | PIP | 
     INS_EVELOPE | CENTROID_INS_POLYGON | 

<spatiotemporal common relationship operators> ; 
<exclusively temporal relationship operators>  

::= BEFORE | AFTER | PRECEDES | STARTS |  
FINISHES |  
<spatiotemporal common relationship operators> ; 

<spatiotemporal common relationship operators> 
   ::= EQUALS | MEETS |OVERLAPS |CONTAINS ; 
<extended attribute list>  
   ::=<attribute list> {.spatial}{.HISTORY} ; 
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