
226 Jong-Yun Lee ETRI Journal, Volume 24, Number 3, June 2002

A spatial object changes its states over time. However,
existing spatial and temporal database systems cannot fully
manage time-varying data with both spatial and non-
spatial attributes. To overcome this limitation, we present a
framework for spatio-temporal databases that can manage
all time-varying historical information and integrate
spatial and temporal relationship operators into the select
statement in SQL3. For the purpose of our framework, we
define three referencing macros and a history aggregate
operator and classify the existing spatial and temporal
relationship operators into three groups: exclusively spatial
relationship operators, exclusively temporal relationship
operators, and spatio-temporal common relationship
operators. Finally, we believe the integration of spatial and
temporal relationship operators into SQL3 will provide a
useful framework for the history management of time-
varying spatial objects in a uniform manner.

Manuscript received May 29, 2001; revised Feb. 28, 2002.
This work was supported by the Program 2001 of Samchok National University.
Jong-Yun Lee (phone: +82 33 570 6405, e-mail: jongyun@ samchok.ac.kr) is with the

Department of Information and Communication Engineering at Samchok National University,
Korea.

I. INTRODUCTION

A geographic information system (GIS) is a computer-based
information system that enables the capturing, modeling,
manipulation, retrieval, analysis , and presentation of
geographically referenced data [1]. Conventional GISs are able
to manipulate only a snapshot image of time-varying spatial
objects. However, a spatial object changes its state over time by
either spatial event operations or non-spatial event operations.
Major temporal studies on handling the history management of
spatial objects in GISs can be divided into two categories : the
temporal geographic information system (TGIS)-based
approach and the spatio -temporal database-based approach.
First, in the last several years, many investigations on temporal
GISs, such as Beller’s TGIS prototype [2], Montgomery [3]
and Renolen’s TGIS [4], and other GIS space-time models [5]-
[7] have aimed at developing TGIS prototypes and
requirements specifications. Second, in addition to reports on
existing spatial databases [8]-[14] and temporal databases [15]-
[19], many recent papers [18], [19]-[28] have reported spatio-
temporal models and their operations, which explicitly record
spatial changes over time as they relate to specific geographic
entities. For example, Peuquet and Duan [18] proposed an
event-based approach to represent a spatio -temporal data
model, and Worboys [20] described a unified model of spatial
and temporal data as well as a spatio -temporal relational
algebra. Lorentzos [19] also presented an extension to SQL,
IXSQL, for the management of interval data. IXSQL includes
an interval-extended relational algebra , extensions of data
definition language, and data manipulation language in SQL.

Integrating Spatial and Temporal
Relationship Operators into

 SQL3 for Historical Data Management

 Jong-Yun Lee

Peuquet and Duan [18] and Claramunt [8] suggested spatio-
temporal data models based on an event time, while Worboy’s
spatio-temporal data model [20] provided bi-temporal elements
of valid time and transaction time. Recently, practical object-
oriented spatio-temporal data models were proposed in SAIF
[25] and CHOROCHRONOS [26], [27].

Notice that previous research on conventional spatial and
temporal databases has focused mainly on managing spatial data
and time-varying historical data in databases. However, those
models cannot handle time-varying spatial objects in a GIS
without any modification, nor do they integrate the existing spatial
and temporal relationship operators into the select statement of
SQL3. Worboys [29] addressed only the needs of handling the
spatial and temporal references in a uniform fashion, and
Claramunt [6] suggested the need to merge space and time and to
relate them to dimensional thematic data.

To overcome these limitations, we focus on solving two major
problems in the development of spatio-temporal databases:
unifying spatial and temporal data models into a single spatio-
temporal data model and then integrating the existing spatial and
temporal relationship operators into the select statement of SQL3.
Our main contribution is an integration of the conventional
spatial and temporal databases into a single structure. To do this,
we propose a relational spatio-temporal data model, called a
relational spatio-temporal data model (RSTDM), which can
handle all time-varying location data and provide a framework
for integrating spatial and temporal relationship operators into the
select statement of SQL3. Our research on the integration of the
spatial and temporal relationship operators into SQL3 for
historical data management includes describing a history
aggregate operator as retrieving all the spatial and non-spatial
histories of objects and three referencing macros―Spatial, Valid,
and Transaction―as extracting different dimensional
information. We also classify the existing spatial and temporal
relationship operators into three groups: exclusively spatial
relationship operators, exclusively temporal relationship
operators, and spatio-temporal common relationship operators.
While Worboys [20] proposed only a logical unified model of
spatio-temporal relational algebra, our spatio-temporal data
model will provide a unification of the spatial and temporal
relationship operators into the select statement of SQL3.

The remainder of this paper is organized as follows. In
section II, we describe major spatial event operations that cause
the spatial objects to change their states. Section III presents a
framework for the proposed spatio-temporal database scheme
and reviews the history management by major spatial event
operations. Section IV outlines procedures to integrate the
existing spatial and temporal relationship operators into SQL3,
and section V designs the history aggregate operator. Finally,
sections VI and VII present a summary of our research.

II. MAJOR SPATIAL EVENT OPERATIONS

Events are things that occur [6]; events are also happenings
of interest to the environment and/or to database systems. For
database systems, events are modeled as a set of processes
that transform the states of entities. In this paper, spatial
events are defined as the transactions, operations, and actions
that cause the spatial or non-spatial value of spatial objects to
change in a database. For information about spatial events,
there are two kinds of event operations―non-spatial
operations and spatial event operations―that can change the
states of spatial objects.

For example, a parcel may be purchased and owned by
people whose address and telephone number, called attribute
data, may change over time. These events, which make up
the historical information of spatial objects, are called non-
spatial event operations. They are treated as important
activities in spatio-temporal databases because they create
many historical objects and store them permanently in the
database. Existing spatial databases cannot manage the
historical objects, so spatio-temporal databases must be used
to store them in the database to maintain all the historical
information for the spatial objects. Figures 1(a) through (c)
are examples of non-spatial event operations that change only
attribute data, such as a parcel’s ownership and address, in
which its historical objects are created and then stored in the
database as historical objects.

Spatial operations are both the simple and complex events
that change the size, area, or location of an object, called spatial
attributes. Here, the spatial operations are categorized into
simple and complex spatial event operations. Simple events
refer to simple spatial event operations, such as creating and
deleting a new object, and complex events refer to complex
spatial event operations, such as merging, splitting, and re-
allocating, the so called major spatial event operations. Thus,
all spatial event operations either change the size or area of
objects or move them. For example, a spatial object can be
moved and its shape and size can also vary according to the
geological scale. In spatio-temporal databases, operations
generate one historical object or more.

Let us consider the major spatial event operations―create,
delete, move, split, merge, and re-allocate―as follows:

Create Operation: For example, a new highway may be
constructed in a space. As Fig. 1(d) shows, a newly created
object can be stored in the database and it will be described as
an insertion operation. No historical objects will be generated.

Delete Operation: After being constructed as a need, a
building or a road may be destroyed. Figure 1(e) shows that a
spatial object is deleted from the current databases and then

ETRI Journal, Volume 24, Number 3, June 2002 Jong-Yun Lee 227

Fig. 1. Major spatial event operations.

(d) Creating (e) Deleting (f) Moving

(i) Reallocating(h) Merging(g) Splitting

(a) Changing ownership (b) Changing owner’s address (c) Changing other attributes

creates a historical object. Note that conventional databases do
not manage the historical information of the objects; however,
such history management is necessary in a full-functioning
spatio-temporal database.

Move Operation: Figure 1(f) shows that the location of a
spatial object is moved without any changes in either its non-
spatial or spatial information. The move operation is
processed by updating a current object and creating its
historical object because the operation changes its location
information. For moving objects, all the paths of a movement
at an event time are stored in spatio-temporal databases as
historical information.

Figures 1(d) through (f) illustrate simple spatial event
operations that change only the spatial information of objects,
such as creating, deleting, or moving. However, three major
spatial event operations―split, merge, and re-allocate―are
complicated spatial operations which change spatial
information, such as size, area, and feature points. The
complicated spatial event operations will be explained by
examples of spatio-temporal operations in section III.2.

Split Operation: A split operation indicates that an object,
such as a parcel, is divided into two or more pieces (Fig. 1(g)).
Thus, the object changes its size, area, and geometry. The split
operation is explained by creating current objects and creating a
historical object (Fig. 1(g)).

Merge Operation: A merge operation (Fig. 1(h)) is where
some parcels are combined into an object, creating a new
spatial object. This creates a merged spatial object and several
historical objects as parent objects. In this case, there is a
problem of managing the historical objects, because the spatial
object has two or more historical objects.

Re-allocate Operation: It is necessary to rearrange spatial
objects to construct a building or to do a land readjustment in a
city. In these cases, many spatial historical objects are created
whenever the size, area, or location of objects changes. Spatio-
temporal databases have to be able to store and retrieve the
historical information. The reallocate operation shown in Fig.
1(i) rearranges the size, location, or area of spatial objects as
needed. It also creates the same number of current spatial
objects and their historical objects.

III. A RELATIONAL SPATIO-TEMPORAL DATA
 MODEL

In this section, we describe our design of a relational spatio-
temporal data model (RSTDM), which can manage all time-
varying spatial and non-spatial information. The data sets that
capture all time-varying location data are grouped into logical
units, depending upon different working granularity. At the
highest level of work granularity is a data set that logically

228 Jong-Yun Lee ETRI Journal, Volume 24, Number 3, June 2002

groups discrete geographical, tabular, and other attribute
information on spatial objects. The next level of granularity is a
layer. Each data set can contain multiple layers that are separate
base maps, but are not partitioned geographically. The layer
therefore contains a lot of similar thematic data. The lowest
level of granularity has features called spatial objects.

Each layer in our spatio-temporal data model consists of five
relations: Feature Relation, Attribute Relation, Feature History
Relation, Attribute History Relation, and Merge Relation. All
the historical information of spatial objects in one layer is
stored under Feature History Relation and Attribute History
Relation. The Merge Relation contains all the historical
information of merged objects. The attribute histories for an
object are managed under its own history relations. It is
beneficial to separate current features from their historical
objects because all the historical information of features can be
managed independently. A framework of the spatio-temporal
data model is described completely in Definition 1 and
Definition 2. Table 1 also shows the notation for modeling our
spatio-temporal data model.

Table 1. Notation for modeling the spatio-temporal databases.

Notation Descriptions

Ui
Di
Li
Sti

fid, hid
Fi

FG
FA
A
M
A

VT
TT

Prev
T
'
"

Universal set
A data set i
A layer i
A spatio-temporal object i
A feature identifier
Feature i
Geometry for a feature
Spatial vector for a feature, <A, VT, TT, prev>
Attribute vector for a feature, <a1, a2, ..., am>
Merge relation
An attribute
A valid time period <VTs, VTe>
A transaction time period < TTs, TTe>
Previous historical pointer for a feature
Timestamp
a current relation
a history relation

Definition 1 (Spatio-Temporal Database Hierarchy)

Suppose that U, D, L, and sto are a universal set, a data set, a
layer, a spatio-temporal object, respectively. A universal set U
is divided into multiple data sets {D1, D2, D3, ... , Dm}
associated with the object’s themes. A data set D is composed
of many layers, {L1, L2, L3, ... , Ln}, and each layer Li consists

of a Feature Relation and an Attribute Relation for current
objects, and a Feature History Relation, an Attribute History
Relation, and a Merge Relation for their historical objects. The
relationship between the Feature Relation and Attribute
Relation is associated with the equi-join operation of feature
identifiers (fid). In addition, the relationship between the
Feature and Attribute Relations and the Feature and Attribute
History Relations is connected with the historical information
of the Attribute Relation and Attribute History Relation. Each
relation involves many spatio-temporal objects, {sto1, sto2,
sto3, ... , ston}.

Next, a layer is composed of a Feature Relation and an
Attribute Relation which separately express the current spatial
and non-spatial data for spatial objects. As described in
Definition 2, it also includes a feature history relation and an
attribute history relation for historical objects.

Definition 2 (Spatio-Temporal Database Scheme) The
Feature Relation Fi’ and Feature History Relation Fi” for the i-
th layer describe a vector of spatial data, <fid, f1, f2, ... , fn, FGi>,
where fid represents identifier, f1, f2, ... , fn spatial data and FGi
geometry. The Attribute History Relation FAi” for the i-th layer
presents an attribute vector of non-spatial data, <Ai, VT, TT,
prev>, where a valid time vector VT = <VTs, VTe> and a
transaction time vector TT = <TTs, TTe> denote the beginning
and ending times of the valid time and transaction time,
respectively. Prev is also a historical pointer of a feature in a
historical relation, and Ai is an attribute vector for the spatial
object of the i-th layer, <fid, a1, a2, ... , am>. On the other hand,
the Attribute Relation FAi’ for the i-th layer is described only
by an attribute vector of non-spatial data, <Ai, VTs, TT, prev>.
The Merge Relation Mi describes a historical pointer vector of
merged objects, <fid, hid, VT>, where hid denotes the
historical pointer of a spatial object fid in the Feature History
Relation. A Merge Relation stores only historical information
of spatial objects on which the merge operation occurs.

Note that the structures of Attribute Relation FAi’ and
Attribute History Relation FAi” in Definition 2 are different.
VT is the time period when a spatial object is true in reality, and
transaction time TT is a pair of timestamps in which a spatial
object was present in the database. The time domains of the
valid time are {t1, t2, t3, ... , tk, now} and those of the transaction
time are {t1, t2, t3, ... , tk}∪{UC}, where UC is “Until
Changed” [17].

To summarize, the proposed model represents the current
state of a spatial object by a spatial vector <fid, f1, f2, ... ,fn, FGi>
and an attribute vector <Ai, VTs, TT, prev> in the Feature
Relation Fi’ and Attribute Relation FAi’. Any historical object is
stored by a spatial vector <fid, f1, f2, ... , fn, FGi>, an attribute
vector <Ai, VT, TT, prev>, and an optional merge vector <fid,

ETRI Journal, Volume 24, Number 3, June 2002 Jong-Yun Lee 229

Fig. 2. Structure of relational spatio-temporal data model.

<Feature Relation F i'>
fid No MBR area … Geometry

<Attribute Relation FA i '>

Join

Join

Layer 1
(Theme 1)

Layer i
(Theme i)

Layer n
(Theme n)… …

Spatial World

Merge Relation M i >
fid hid VTs VTe

Join

fid Owner … VTs Prev

<Feature History Relation F i''>
hid No MBR area … Geometry

<Attribute History Relation FA i ''>
hid Owner …… VTs VTe Prev

hid, VT> in the Feature History Relation Fi”, Attribute History
Relation FAi”, and Merge Relation Mi, respectively. Here,
examples of a feature’s spatial attributes vector <f1, f2, ... , fn>
are a feature identifier (fid), MBR (Minimum Rectangle
Boundary), area, length, perimeter, etc., and sample non-spatial
attributes of the spatial object <fid, a1, a2, ... , am> are owner,
address, and telephone number (Fig. 2). In other words, a
spatio-temporal object is an integrated object whose periods of
valid and transaction timestamps are attached to the object.
Thus, the Attribute History Relation in the proposed spatio-
temporal databases is extended by bi-temporal elements, called
valid times and transaction times, and a historical pointer (prev)
to represent time-varying spatial historical information.

The structure of the proposed spatio-temporal database is
shown in Fig. 2. The spatial world is modeled by lots of layers
(or themes). Each layer is described by two relations—Feature
Relation and Attribute Relation—for current spatial objects and
by three relations—Feature History Relation, Attribute History
Relation, and Merge Relation—for their historical objects. A
merged object’s histories are retrieved from the historical
identifier with the valid time period in the Merge Relation.
Therefore, all the histories for a current object can be retrieved
from its historical pointer of the Attribute Relation directly or
from its merged identifiers of the Merge Relation.

In the above expression, the merge relation {<fid, hid, VTs,
VTe>} indicates an optional table which has historical information

information for the merge objects. The following section
reviews the relational spatio-temporal databases through major
spatial event operations that generate spatial historical
information. The major spatial event operations will be
performed by combinations of database operations, such as
insert and update, without any deletion.

IV. INTEGRATION OF SPATIAL AND
 TEMPORAL RELATIONSHIP OPERATORS

A spatio-temporal database manages four- or five-
dimensional information of spatial objects in addition to two-
or three-dimensional spatial data and two-dimensional
historical information with a valid time and a transaction time.
A spatio-temporal database requires extensions of data types
and query language in SQL3. Three previous studies on spatial
and temporal queries only addressed the need to merge space
and time and to allow the handling of the spatial and temporal
references in a uniform fashion to produce a conceptually
flexible language [6], [20], [29].

However, no studies have tried to resolve the problem of
integrating spatial and temporal relationship operators into
SQL3. We therefore focus on merging the topological
comparison operators, called spatio-temporal relationship
operators, for spatial and temporal queries to handle meets,
overlaps, contains, equals, and so on. In order to integrate these

230 Jong-Yun Lee ETRI Journal, Volume 24, Number 3, June 2002

spatial and temporal relationship operators in SQL3, we first
define three referencing macros: Spatial, Valid, and
Transaction. We then classify the existing spatial and temporal
relationship operators into three groups: exclusively spatial
relationship operators, exclusively temporal relationship
operators, and spatio-temporal common relationship operators.
In the following sections, we describe them in detail.

1. Spatio-Temporal Referencing Operators

The aim of the proposed spatio-temporal referencing
operators is to integrate the spatial and temporal relationship
operators into SQL3 in a uniform fashion. In spatio-temporal
databases, it is necessary to define three operators that reference
the different dimensional information of a spatial object,
because the operands of spatio-temporal relationship operators
can be either a spatial or a temporal object, depending on the
user’s query statement. In this section, we therefore define three
referencing operators of spatio-temporal data―spatial, valid,
and transaction―in Definitions 1 through 3, where i, m, and n
are natural numbers.

First, the spatial operator is used for indicating geometric
information of a tuple from either current spatial objects or
historical objects. It is defined as follows:

Definition 1 Object.spatial = {(x1,y1, …, xn,yn) | a
feature’s geometric information FGi from spatial attributes,
Fi of a current object <fid’, F1’, F2’, ... , Fn’, FG’i> and a
history object <fid”, F1”, F2”, ... , Fn”, FG”i>}, where the
feature’s geometric information indicates the real-world
coordinates of a spatial object.

For example, there is an explicit spatial reference, such as
schools.spatial, where the school in the spatio-temporal
database may be a layer relation. It is similar to the valid
timestamp reference operator in temporal databases [21], [22],
[29].

Second, the valid operator references the valid time of a
spatial object, which indicates a pair of valid timestamps for a
tuple from which an object is true in reality. It is defined as
follows:

Definition 2 Object.valid = {[VTs, VTe] | valid timestamps
<VTs, VTe>, which indicates the beginning to ending time
period of a valid time VT from attribute data of either a current
object <A’, VT’, TT’, prev’> or a history object <A”, VT”, TT”,
prev”>.

Next, the transaction operator is used for referencing a pair
of transaction timestamps of an object.

Definition 3 Object.transaction = {[TTs, TTe] | transaction
timestamps <TTs, TTe>, which indicates the beginning and
ending time period of transaction time TT from attribute data of

either a current object <A’, VT’, TT’, prev’> or a history object
<A”, VT”, TT”, prev”>.

Table 2 summarizes the spatial and temporal referencing
operators. There are only three possible combinations of spatio-
temporal reference operators for the spatio-temporal query
expressions―spatial/spatial, valid/valid, transaction/trans-
action―since the referencing operators between valid time and
transaction time cannot be exchanged. However, it is not
necessary to combine with elements such as valid/transaction
and transaction/valid because the valid dimension is different
from the transaction dimension.

Table 2. Spatio-temporal referencing operators.

 Use
Operators

Examples of use

Spatial
- a.spatial disjoints b.spatial
- b.spatial contains a.spatial
- a.spatial overlaps b.spatial

Valid
- a.valid precedes Timestamp 'Nov-31-1998'
- a.valid meets b.valid

Transaction
- a.transaction contains PERIOD 'Jan-01-1998,
 Nov-31-1998'

2. Exclusively Spatial Relationship Operators

Existing spatial databases contain many relationship operators
for comparing the spatial topological relationships among
spatial objects. These spatial relationship operators include the
following: common point, line cross, common line, area
intersect, disjoints, point in polygon, contains or is_contained,
centroid inside polygon, inside envelope, overlaps, meets, and
equals.

This paper classifies the general spatial relationship operators
into two groups: spatio-temporal common relationship
operators and exclusively spatial relationship operators. The
exclusively spatial relationship operators include common point,
line cross, area intersect, point in polygon, centroid inside
polygon, and inside envelope for only spatial use.

3. Exclusively Temporal Relationship Operators

Allen [30] proposed a complete set of period relations, which
included before, after, starts, started_by, finishes, finished_by,
during, contains, meets, met-by, equals, overlaps, and
overlapped_by. This paper separates temporal relationship
operators, defining exclusive temporal relationship operators as
only specific time-comparison operators; these include before,

ETRI Journal, Volume 24, Number 3, June 2002 Jong-Yun Lee 231

after, starts, finishes, finished_by, during, met_by, and
overlapped_by. The other category of temporal relationship
operators is the spatio-temporal common relationship operators.

The exclusive temporal relationship operators are
implemented by converting their semantics into relational
expressions. For example, the equals operator should be
translated into a relational expression of valid time “VTs >
begin and VTe = end” in spatio-temporal databases.

4. Spatio-Temporal Common Relationship Operators

It is necessary to define some macros for referencing the
dimensional information of an object in spatio-temporal
databases. We therefore defined spatial and timestamp
referencing macros (Definitions 1–3). The operand of a spatio-
temporal relationship operator can be either a spatial or a
temporal object associated with a query statement. Table 2
shows the macros, spatial, valid, and transaction, which are an
extraction of geometry, valid time, or transaction time from a
spatio-temporal object, respectively.

It is possible to employ a prefix function-style notation for
reference macros or a postfix notation; we adopted the postfix
notation according to the conventional query expression rules
of SQL3. In addition, the spatio-temporal reference macros
should be connected with the proposed spatio-temporal
common relationship operators.

As Table 3 shows, the third group is the spatio-temporal
common relationship operators whose operands can be either
spatial or temporal objects. The topological relationship
operators may be used in conjunction with the dimensional
reference macros, spatial, valid, and transaction. Thus, each of
the spatio-temporal common relationship operators can be
operated differently as either a spatial or temporal relationship
operator, depending upon its operands. There are possible
combinations of spatio-temporal reference macros with spatio-
temporal relationship operators for query expressions (Table 3).
For example, it is only possible to combine either spatial

reference operands or temporal reference operands, such as
Spatial/Spatial, Valid/Valid, Transaction/Transaction. At this
point, it is also important to define clearly whether the
timestamp is a valid time or a transaction time because they are
not interchangeable. The possible search expressions of a
spatio-temporal query will yield a Boolean value such as true
or false. As a result, spatial and temporal relationship operators
in the select statement of SQL3 can be integrated in a uniform
fashion by defining three reference macros and classifying
existing topological relationship operators into three groups:
exclusively temporal relationship operators, exclusively spatial
relationship operators, and spatio-temporal common
relationship operators.

V. HISTORY AGGREGATE OPERATOR
Existing relational database management systems (RDBMSs)

support five aggregate functions: count, sum, avg, min, and max.
Since the spatio-temporal databases provide the history
management of spatial objects, it is necessary to design a new
aggregate function that can retrieve all the historical information
of an object automatically. To this end, we designed a history
aggregate operator as follows.

1. What is the History Aggregate Operator?

A spatial object in a spatio-temporal database is represented
by spatial data, non-spatial data, valid and transaction time
periods, and its historical pointers. Among these data,
geometric information, owners, and addresses of a spatial
object change over time when an event occurs. The spatial
object has its historical objects of either spatial or non-spatial
data. To handle changes of state over time, we propose a
history operator to retrieve all the historical interrogations of a
spatial object (Definition 4).

Definition 4 A history aggregate operator is a selection
operation in which all the histories of either the spatial or non-

Table 3. Usage of the spatio-temporal common relationship operators

Spatio-temporal relationship operators Spatial use Temporal use

Meets - a.spatial meets b.spatial - a.valid meets b.valid
- a.transaction meets b.transaction

Overlaps - a.spatial overlaps b.spatial - a.valid overlaps b.valid
- a.transaction overlaps b.transaction

Contains - b.spatial contains a.spatial - b.valid contains a.valid
- b.transaction contains a.transaction

Equals - a.spatial equals b.spatial - a.valid equals b.valid
- a.transaction equals b.transaction

232 Jong-Yun Lee ETRI Journal, Volume 24, Number 3, June 2002

spatial data of an object are extracted from a spatio-temporal
database. The processing results may include many historical
objects or be empty, depending on the object states. Figure 3
describes how an algorithm of the history operator is defined.

Procedure history(int fid, designated attribute type)
Input: feature identifier fid, designated attribute type
Output: feature’s spatial, non-spatial historical information or both
Step 1. Identify input features from the window;
Step 2. Check current read mask from its feature layer;
Step 3. If (the current layer is not readable)

 Set the read mask of the current layer into readable;
Step 4. Read the feature id from current feature layer and its previous pointer;
Step 5. If (its previous pointer = merge)

 Retrieve all of its previous pointers;
 For each previous pointer, call history (int hid, designated attribute type);

Step 6. for (; its previous pointer != NULL;) {
 Switch (designated attribute type) {
 Case NONSPATIAL :
 Extract the attribute historical record of the feature fid;
 Case SPATIAL :
 Extract the previous spatial history of the feature fid;
 } /* switch statement */
 Reset current previous pointer into its previous pointer;
 } /* for statement */

Step 7. Stop;

Fig. 3. Processing strategy of history aggregate operator.

As described in the spatio-temporal reference macros above,

we also adopt a postfix notation as an interface with the history
operator. There are two kinds of interfaces in the select
statement of SQL3: One is the attribute history of the spatial
object in the GIS and the other is the spatial history of objects
designated by spatial attributes. A spatial object in spatio-
temporal databases is handled as a tuple. The efficiency and
convenience of use for the history operator is explained
through the following queries:

Example 1 List all histories of the owners who owned the
lot number of building 100.

SQL3> SELECT o.nonspatial.HISTORY
 > FROM buildings b, owners o

> WHERE b.lotNumber = 100 and o.fid = b.fid ;

Example 2 List all the spatial histories of a building whose
lot number is 100, where the spatial histories may be geometric
real-world coordinates of its historical objects.

SQL3> SELECT *.spatial.HISTORY

 > FROM buildings
 > WHERE fid = 100;
Frequently, we may need to interrogate all spatial or non-

spatial histories of designated objects. To do this, we suggest
a history operator having an interface with the postfix
notation as we described above. In our proposed spatio-
temporal database, all the historical information for spatio-
temporal objects can be retrieved by their historical
information in the Attribute Relation and Attribute History
Relation. This is possible because all the histories of either
their spatial or non-spatial data are managed in the spatio-
temporal database. Therefore, spatio-temporal queries can be
expressed economically by using the proposed reference
macros and the history aggregate operator, as we show in the
following examples. Queries of examples 3, 4, and 5 below
are examples in which the spatial and temporal relationship
operators are integrated into the select statement of SQL3 in
a uniformed manner. In addition, we can express all
historical interrogations of either spatial or non-spatial data
as follows:

Example 3 Retrieve all the moving paths of a car ‘Seoul
4Ro-6179’ on May 1, 1998.

SQL3> SELECT *.spatial.HISTORY
 > FROM Vehicle v
 > WHERE v.cno = ‘Seoul 4Ro-6179’ and
 v.valid overlaps PERIOD
 ‘01-May-1998, 01-May-98’;

Example 4 List all owners and their address histories of
building ‘Jongro-gu A’ since 1990.

SQL3> SELECT b.owner.HISTORY, b.address.HISTORY
 > FROM Buildings b, County c
 > WHERE b.name = ‘A’ and
 c.county = ‘Jongro-gu’ and
 c.spatial adjacent b.spatial and
 b.valid overlaps PERIOD ‘01-Jan-90,
 CURRENT_DATE’;

Example 5 List all of the spatial histories of buildings
adjacent to building ‘Jongro-gu A’ since 1990.

SQL3> SELECT b.spatial.HISTORY
 > FROM Buildings b, County c
 > WHERE b.name = ‘A’ and
 c.county = ‘Jongro-gu’ and
 b.spatial is_constained c.spatial and
 b.spatial meets c.spatial and
 b.valid overlaps PERIOD ‘01-Jan-90,
 CURRENT_DATE’;
In the spatial case (Example 5), the query results will be

visualized on maps in windows. Otherwise, the historical

ETRI Journal, Volume 24, Number 3, June 2002 Jong-Yun Lee 233

attribute data can be viewed in tables having attributes with
valid and transaction times.

2. The Search Statement for Spatio-Temporal Data

For any spatio-temporal database, we must define the data
definition language and data manipulation language for the
spatio-temporal data. In our system, we extend the following
search statement in SQL3 by spatio-temporal reference macros,
exclusive spatial relationship operators, exclusive temporal
relationship operators, spatio-temporal common relationship
operators, and the history aggregate operator in a uniform
manner.

 SELECT <attribute list>
 FROM <relation list>
 WHERE <attribute qualifications>
The following are examples of attribute qualifications for

typical spatio-temporal queries. The attribute qualifications
on the “where” clause may be combined with other attribute
predicates, which are similar to the previous query
expressions in SQL3.

 <Temporal relationship operators>
 a.valid overlaps b.valid
 c.valid precedes
 PERIOD ‘01-Jan-1997, 31-Oct-1997’
 <Spatial relationship operators>
 a.spatial overlaps b.spatial
 b.spatial contains a.spatial
A brief BNF notation of a search statement for a spatio-

temporal database extended by the spatio-temporal
relationship operators and reference macros in SQL3 is
described in APPENDIX. The conventions used to interpret
the syntax rule are as follows: [] means it is required, {} is
optional, and a bar (|) indicates OR. Lines (2)-(3) of the
appendix are executed the same as in SQL2, but lines (1) and
(4)-(6) in the “where” clause must be extended to retrieve
spatio-temporal data. Thus, spatial, temporal, and spatio-
temporal patterns can be handled in a uniform manner in the
proposed spatio-temporal queries.

VI. REVIEWS OF CONTRIBUTIONS

In this section, we consider an implementation of the
proposed spatio-temporal database scheme and review our
research results as well.

1. Evaluation of Implementation Results

In the majority of temporal extensions to the relational model,
valid and transaction times can be represented as a single

chronon, sets of consecutive chronons, and arbitrary sets of
chronons. In our approach, we represent the structure of valid
and transaction times as a pair of points (begin, end) to
provide the same query processing algorithm of the
conventional relational model as described by Allen [30].
New tuples are added to the database by a tuple-level
versioning method whenever any attribute of a spatial object
is changed.

In this paper, we proposed a relational spatio-temporal data
model, which is extended by valid time, transaction time,
and a historical pointer of the spatial data model, called SDE
[32]. As illustrated in Tables 2 and 3, we described the
semantics and uses of spatio-temporal relationship operators
and reference macros. The spatio-temporal relationship
operators in SQL3 are then classified into the existing spatial
and temporal relationship operators into three groups:
exclusively spatial relationship operators, exclusively
temporal relationship operators, and spatio-temporal
common relationship operators. They were implemented by
a layered approach with Oracle DBMS 7.2.3 and SDE 2.1
on Solaris 2.5.

Next, let us review the processing results of spatio-temporal
queries in the databases.

Example 6 Find all the histories of a feature ‘201’ since
1990 from the layer ‘Parcel’ of Table 4.

SQL3> SELECT *.HISTORY
 > FROM Parcel p
 > WHERE fid = 201 and
 p.Valid overlaps PERIOD
 ‘01-Jan-1990, CURRENT_DATE’;
The above query processing starts with retrieving a current

object ‘201’ from the Feature Relation ‘Parcel’ and then
continues with the previous pointer of the current record.
Here, the history information is obtained from the Merge
Relation ‘Parcel_merge’ because the previous pointer of
object ‘201’ is Merge, so two historical records, ‘200’ and
‘300,’ are obtained from the Merge Relation. With the
historical records of ‘200’ and ‘300,’ each of all the histories
of ‘200’ and ‘300’ are retrieved from the Feature History
Relation repeatedly until their previous pointers are Null.
Finally, we can see the query results of Example 6 computed
from Table 4 as follows:

Result = {
 (201, Polygon, (0, 0, 200, 0, 200, 100, 0, 100),

 ‘01-Nov-97, Now’, Merge),
 (200, Polygon, (0, 0, 100, 0, 100, 100, 0, 100),
 ‘01-Mar-81, 31-Oct-97’, Null),
 (300, Polygon, (100, 0, 200, 0, 200, 100, 100,
 100), ‘01-Mar-81, 31-Oct-97’, Null)};

234 Jong-Yun Lee ETRI Journal, Volume 24, Number 3, June 2002

Table 4. Example of a layer ‘Parcel’ in spatio-temporal databases.

fid Type Geometry VTs Prev fid hid
101 Polygon (0, 0, 100, 0, 100,100, 0,100) 01-Jun-96 100 201 200
102 Polygon (100,0,200, 0,200,100,100,200) 01-Jun-97 100 201 300
201 Polygon (0, 0, 200, 0, 200,100, 0,100) 01-Nov-97 Merge
400 Polygon (0, 0,100, 0, 100,100, 0,100) 01-May-98 400-1
500 Polygon (100,0,200,0, 200,100,100,100) 01-May-98 500-1

(c) Parcel_merge

 (a) Parcel relation

hid Type Geometry VTs VTe Prev

100 Polygon (0, 0, 200, 0, 200, 100, 0,100) 01-Mar-81 31-May-96 Null
200 Polygon (0, 0, 100, 0, 100, 100, 0, 100) 01-Mar-81 31-Oct-97 Null
300 Polygon (100, 0, 200, 0,200,100,100,100) 01-Mar-81 31-Oct-97 Null

400-1 Polygon (0, 0, 150, 0, 50, 100, 0, 100) 01-Mar-81 31-Apr-98 Null
500-1 Polygon (150, 0,200, 0, 200,100,50,100) 01-Mar-81 3-Apr-98 Null

(b) Parcel history relation

2. Comparisons of Previous Work

With major spatial event operations related to the history of
an object, this paper presented the spatio-temporal data model,
called ORSTDM and showed how to integrate the existing
spatial and temporal relationship operators into the select
statement of SQL3. Comparing our work with previous
studies on spatio-temporal database systems, our contributions
can be summarized as follows:

Integrating the Existing Spatial and Temporal
Relation-ship Operators into SQL3 in a uniform fashion.
Previous studies on spatial and temporal databases proposed
many spatial and temporal relationship operators, including
disjoint, contains, inside, equal, meet, cover, covered_by, and
overlap between two connected spatial objects in two
dimension space [31] and before, equals, meets, overlaps,
during, starts, and finishes [30] in interval comparison
operators. There has been no previous research result on
unifying the spatio-temporal queries of SQL3 for information
that has spatial and temporal components. Clalamunt [6] and
Worboys [29] addressed only the needs of conceptually
handling the spatial and temporal references in a uniform
fashion. In this paper, however, we completely solved the
problem of a unifying topology computation for different
dimensions. The spatial relationship operators can integrate
with the temporal relationship operators in the select
statement of SQL3 by classifying the conventional spatial and
temporal relationship operators into exclusively spatial
relationship operators, exclusively temporal relationship
operators, spatio-temporal common relationship operators,
and defining three reference macros, Spatial, Valid, and

Transaction.
In other words, we designed spatio-temporal relationship

operations, including the reference macros, for extracting
either spatial or temporal information, and classified the
existing spatial and temporal relationship operators into three
groups. In this way, we could actually unify the spatio-
temporal relationship operators in SQL3, which have
traditionally been handled by the different methods depending
on the spatial or temporal queries, and simply express the
spatio-temporal queries. Thus, all discrete time-varying
historical information of spatial objects could be handled in a
uniform method. However, there are complex spatio-temporal
phenomena such as wildfire, that cannot be fully represented
in this paper and these phenomena will require a continuous
time model.

Defining the New History Aggregate Operator for
Spatio-temporal Databases. We designed the new History
aggregate operator to retrieve all the historical information of
designated objects from stored spatio-temporal databases. It
can be easily used in the select statement to represent a
historical query, as the queries of examples 1 through 6
illustrate. In addition, all the histories of spatial objects in
spatio-temporal databases can be retrieved through the
History aggregate operator in SQL3 without constructing any
application programs.

Enhancing the Expression Power of a Spatio-Temporal
Query. As an example, Fig. 4(a) shows how the conventional
spatial retrieval query language in SDE [32] is expressed.
However, it can be described in a uniform fashion by using the
exclusively spatial relationship operator, an exclusively

ETRI Journal, Volume 24, Number 3, June 2002 Jong-Yun Lee 235

temporal relationship operator, and spatio-temporal reference
macros (Fig. 4(b)). This Figure shows how any spatio-temporal
query can be expressed very efficiently without losing any
spatial analysis information, and how the expression power of
spatio-temporal queries in SQL3 is improved.

In particular, the spatio-temporal queries with spatial and
temporal search conditions in previous work on spatial and
temporal databases cannot be described in the select
statement of SQL3. For example, as Fig. 4(b) illustrates,
spatio-temporal queries with spatial and time relationship
operators cannot be integrated in existing spatial and temporal
databases.

Notice that most of the spatio-temporal queries with spatial
and temporal predicates cannot be described at the same time
in the select statement of SQL2 (Fig. 5). However, with the
select statement of SQL3, we solved those problems

completely by defining three reference macros and classifying
the existing spatial and temporal relationship operators into
three different groups: exclusively spatial relationship operators,
exclusively temporal relationship operators, and spatio-
temporal common relationship operators.

Designing a Unified Relational Spatio-Temporal Data
Model. Above all, this paper proposed a relational spatio-
temporal data model, called ORSTDM, in which spatial data
actually integrates temporal data by extensions of time
intervals, called valid and transaction times, and a historical
pointer. The ORSTDM can manage and retrieve all historical
information of objects by which spatial event operations
occur.

This model provides more practicable solutions than the
previous spatio temporal data models [6], [18] because it can be

Feature zonef, bldgf;
Zonelayer = s100;
Bldcnt = 0;
For (ret = SE_get_feature_by_layer(zonelayer, &zonef,

Zone= COMMERCIAL); ret = SUCCESS;
Ret = SE_get_next_feature(&zonef)) { /* for */

SE_set_search_by_feature(&zonef);
For (returncode=SE_search(bldlayer, SM_AI, &bldgf,

USE=RESIDENTAL, VTs >= 01-Jan-96 and
VTe < 31-Dec-97); ret= SUCCESS; ret =
SE_next_search(&bldgf))

Bldcnt++;
} /* outer loop */

(a) A spatio-temporal query in SDE

SQL3> SELECT T.spatial, count(*)
FROM s100 S, s100 T
WHERE S.zone = COMMERCIAL and

T.USE = RESIDENTAL and
T.spatial intersects S.spatial and
T.valid overlaps PERIOD ‘01-Jan-96, 31-Dec-97’;

(b) A spatio-temporal query in SQL3

Fig. 4. Comparison of query representations in SDE and SQL3.

Items Case of overlapping spatially and temporally Case of overlapping spatially and
meeting temporally

SQL2

SELECT *.geometry, count(*)
FROM relation S, relation T
WHERE S.fid = 100 and
 S overlaps T and // cannot describe
 S overlaps PERIOD ‘01-Jan-96, 31-Dec-97’;

SELECT *
FROM relation S, relation T
WHERE S.fid = 100 and
 S overlaps T and // cannot describe
 S meets T; // cannot describe

SQL3

SELECT *.spatial, count(*)
FROM relation S, relation T
WHERE S.fid = 100 and
 S.spatial overlaps T.spatial and
 S.valid overlaps
 PERIOD ‘01-Jan-96, 31-Dec-97’;

SELECT *
FROM relation S, relation T
WHERE S.fid = 100 and
 S.spatial overlaps T.spatial and
 S.valid meets T.valid;

Fig. 5. Comparison of spatio-temporal query representations in SQL2 and SQL3.

236 Jong-Yun Lee ETRI Journal, Volume 24, Number 3, June 2002

used as a tool for history management of spatial objects directly
without any changes. Finally, we can summarize our model as
follows: the proposed spatio-temporal database system
integrates the spatial, temporal, and spatio-temporal
relationship operators into SQL3 in a uniform manner and at
the same time supports all historical interrogation of spatio-
temporal data.

VII. CONCLUSIONS

The features of spatio-temporal data in the real world vary
over time; these features are managed in a GIS. However,
conventional GIS software cannot handle time-varying data
because it neither controls the historical information of spatial
objects nor supports their spatio-temporal operations.
Furthermore, previous spatio-temporal data models and query
language cannot handle all the history management of spatial
objects.

To overcome the limitations of previous models, we
suggested the spatio-temporal database scheme, spatio-
temporal relationship operators, and a history aggregate
operator to support historical queries in SQL3 and to support
all historical interrogation of spatio-temporal data from users.
We also described spatio-temporal reference macros for
extracting the designated dimensional information of spatio-
temporal data, as well as a brief BNF statement of insert and
search statements in SQL3, which are extended by data types, a
time clause, and our proposed spatio-temporal operations for
spatial and temporal use. We then implemented our designs
and demonstrated them by examples of spatio-temporal queries.
In the future, we will study spatio-temporal indices and spatio-
temporal join processing algorithms to further support
convenient query processing.

ACKNOWLEDGEMENT

The author would like to thank the anonymous reviewers
and Juli Scherer for their helpful valuable comments and
suggestions.

APPENDIX: A brief BNF description for the spatio-
temporal search statement

SELECT <extended attribute list> (1)
FROM <relation list> (2)
WHERE <attribute qualifications>; (3)
<attribute qualifications>

::= [object.valid <exclusively temporal relationship operators>
 <valid timestamp reference expressions>] | (4)

 [object.transaction <exclusively temporal

 relationship operators> <transaction timestamp
 reference expressions> | (5)

 [object.spatial <exclusively spatial relationship
operators> object.spatial] ; (6)

<valid timestamp reference expressions>
::= object.valid | timestamp expressions;

<transaction timestamp reference expressions>
 ::= object.transaction | timestamp expressions;
<timestamp expressions>
 ::= Timestamp ‘<datetime>’ |
 PERIOD ‘<datetime> - <datetime>’;
<exclusively spatial relationship operators>
 ::= DISJOINTS | IS_CLOSEST | IS_SHORTEST | PIP |
 INS_EVELOPE | CENTROID_INS_POLYGON |

<spatiotemporal common relationship operators> ;
<exclusively temporal relationship operators>

::= BEFORE | AFTER | PRECEDES | STARTS |
FINISHES |
<spatiotemporal common relationship operators> ;

<spatiotemporal common relationship operators>
 ::= EQUALS | MEETS |OVERLAPS |CONTAINS ;
<extended attribute list>
 ::=<attribute list> {.spatial}{.HISTORY} ;

REFERENCES

[1] M.F. Worboys, GIS: A Computing Perspective, Taylor & Francis
Publishers, 1995, pp.1-4.

[2] A. Beller, T. Giblin, K.V. Le, S. Litz, T. Kittel, and D. Schimel,
“Temporal GIS Prototype for Global Change Research,” GIS/LIS
Proc., vol. 2, 1991, pp. 752-765.

[3] L.D. Montgomery, Temporal Geographical Information Systems
Technology and Requirements: Where we are today, Master's
thesis, The Ohio State University, 1995.

[4] A. Renolen, Temporal Maps and Temporal Geographical
Information Systems, Dept. of Surveying and Mapping (IKO),
The Norwegian Institute of Technology, Feb. 14, 1996.

[5] M. Yuan, “Temporal GIS and Spatio-Temporal Modeling,” The
3rd Int’l Conf./Workshop Integrating GIS and Environmental
Modeling, June 21, 1996.

[6] C. Claramunt, “Managing Time in GIS: An Event-Oriented
Approach,” Recent Advances in Temporal Databases, Workshops
in Computing Series, Edited by J. Clifford and A. Tuzhilin (eds),
Berlin:Springer-Verlag, 1995, pp. 23-42.

[7] S. Price, “Modeling the Temporal Element in and Land
Information Systems,” Int’l J. of Geographic Information systems,
vol. 3, no. 3, 1989.

[8] J.M. Carey, D.J. Dewiit, and S.L. Vandenberg, “A Data Model and
Query Language for EXODUS,” Proc. ACM SIGMOD, 1988, pp.
413-423.

[9] M.J. Egenhofer, “Spatial SQL: A Query and Presentation
Language,” IEEE Trans. on Knowledge and Data Engineering,

ETRI Journal, Volume 24, Number 3, June 2002 Jong-Yun Lee 237

vol. 6, no. 1, Feb. 1994.
[10] R.H. Guting, “Gral: An Extensible Relational Database System

for Geometric Applications,” Proc. of the Fifteenth Int’l Conf. on
Very Large Data Bases, Amsterdam, 1989, pp. 33-43.

[11] L.M. Haas and W.F. Cody, “Exploiting Extensible DBMS in
Integrated Geographic Information Systems,” Advances in Spatial
Databases, 2nd Symposium, SSD '91, Zurich, Switzerland, Aug.
28-30, 1991, pp. 423-450.

[12] M. Stonebraker, L. Rowe, and M. Hirohama, “The
Implementation of POSTGRES,” IEEE Trans. on Knowledge
and Data Engineering, vol. 2, no. 1, 1990.

[13] J. Orenstein and F. Manola, “Probe Spatial Database Application,”
IEEE Trans. on Software Engineering, vol. 14, no. 5, 1988, pp.
611-629.

[14] N. Roussopoulos, C. Faloutsos, and T. Sellis, “An Efficient
Pictorial Database System for PSQL,” IEEE Trans. on Software
Engineering, vol. 14, no. 5, 1988, pp. 639-650.

[15] R.T. Snodgrass, The TSQL2 Temporal Query Language, Tucson,
AZ, Kluwer Academic Publishers, 1995.

[16] A.U. Tansel, “Adding Time Dimension to Relational Model and
Extending Relational Algebra,” Information Systems, vol. 11, no.
4, 1986, pp. 343-355.

[17] R.T. Snodgrass, “The TSQL2 Temporal Query Language,” The
TSQL2 Language Design Committee, Kluwer Academic
Publishers, 1995.

[18] D. Peuquet and N. Duan, “An Event-Based Spatiotemporal Data
Model (ESTDM) for Temporal Analysis of Geographical Data,”
Information Systems, vol. 9, no. 1, 1995, pp. 7-24.

[19] N.A. Lorentzos and Y.G. Mitsopoulos, “SQL Extension for
Interval Data,” IEEE Trans. on Knowledge and Data Engineering,
vol. 9, no. 3, May/June 1997, pp. 480-499.

[20] M.F. Worboys, “A Unified Model for Spatial and Temporal
Information,” The Computer J., vol. 37, no. 1, 1994.

[21] T.S. Cheng and S.K. Gadia, “A Pattern Matching Language for
Spatio-Temporal Databases,” CIKIM'94, 1994, pp. 287-295.

[22] J.Y. Lee, B.I. Ahn, and K.H. Ryu, “A Historical Extension for
SDE Data Model,” The Trans. of the Korea Information
Processing Society, vol. 5, no. 9, Sept.1998.

[23] J.Y. Lee, S.J. Lee, and K.H. Ryu, “SQL Unification of
Spatiotemporal Operations for AVLS: SQL/ST,” The Int’l
Association of Management 16th Annual Conf., Aug. 5-8, 1998.

[24] M. Bohlen, C.S. Jensen, and B. Skjellaug, “Spatio-Temporal
Database Support for Legacy Applications,” A Time Center
Technical Report TR-20, July 9, 1997.

[25] Province of British Columbia, Ministry of Environment, Lands
and Parks, Surveys and Resource Mapping Branch, “British
Columbia Specification and Guidelines for Geomatics. Reference
Series Volume 1: Spatial Archive and Interchange Format: SAIF
Formal Definition,” Release 3.1, Apr. 1994.

[26] N. Tryfona and T. Hadzilacos, “Logical Data Modeling of Spatio-
Temporal Applications: Definitions and a Model,”
CHOROCHRONOS, Technical Report CH-97-03, Dec. 1997.

[27] M. Erwig, M. Scheider, and R.H. Guting, “Temporal and Spatio-
Temporal Data Models and Their Expressive Power,”

CHOROCHRONOS, Technical Report CH-97-10, Dec. 1997.
[28] Young-Ok Shin et al., “TATS: an Efficient Technique for

Computing Temporal Aggregates for Data Warehousing,” ETRI J.,
vol. 22, no. 3, Sept. 2000, pp. 41-51.

[29] M.F. Worboys, “A Data Model for Information with Spatial and
Bitemporal Components,” Technical Report TR93-06, Dept. of
Computer Science, University of Keele, Feb. 1993.

[30] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Comm. of the Association of Computing Machinery, vol. 26, no.
11, Nov. 1983, pp. 823-843.

[31] M. Molenaar, O. Kufoniyi, and T. Bouloucos, “Modeling
Topologic Relationships in Vector Maps,” Proc. Int’l Symposium
On Spatial Data Handling (SDH), 1994

[32] Environmental Systems Research Institute, Inc., Introduction to
SDETM, Environmental Systems Research Institute, Inc., 1996.

Jong-Yun Lee received the BS and MS degrees
in computer engineering from Chungbuk
National University in 1985 and 1987,
respectively and the PhD degree in computer
science from Chungbuk National University,
South Korea, in 1999. He worked as a
Research/Project Leader in the Software

Research and Development Institute of Hyundai Electronic Industrial
Company Ltd. and Hyundai Information Technologies Company Ltd.,
South Korea, from 1990 to 1996. He also worked for Bit Computer
Cooperation in 1989. He is currently an Assistant Professor in the
Department of Information and Communication Engineering at
Samchok National University in South Korea, from March, 1999. His
current research interests include temporal databases, spatio-temporal
databases, spatial databases, object-oriented databases, and GIS. He has
served as a Proposal Evaluator at a national level in GIS. He is a
member of the IEEE and the IEEE Computer Society, Korea
Information Processing Society, and Korea Information Science
Society.

238 Jong-Yun Lee ETRI Journal, Volume 24, Number 3, June 2002

