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Abstract In this paper we have shown conditions of R for the existence
of the solution to the problem of the type —u'' = ue*" on the interval (0, R)
with boundary and other conditions as in (1 — €) — (4) for various ¢.

1. Introduction

We study here about existence and nonexistence of solutions
for the following problem:

d*u cu
~ 3 = ue ,2€ (0,R), R could be + (1 -¢)
du ,
Z0) =0, )
uw(R) =0, (3)
u is positive and decreasing on (0, R). ()

This is an extension of [JN]. where we considered the specific
case ¢ = 1. These are steady-state problems of the associated
semilinear parabolic PDEs

U — Ugy = uwe™™, (z,t) € (0. R) x (0.7).

.
. e s . . )
plus suitable initial and boundary conditions. ( )
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In [J] we have studied the problem (5 — ¢) for the case ¢ = 1
and investigated the ‘condition for the existence of the bounded
solution and for the existence of blowup solution as well as blowup
behavior of the blowup solution.

In this article we have found the relationship between R and ¢
by observing the changing behavior of the time length using the
elliptic integrals (see [S]).

2. The Case ¢ = 0.
This case is quite simple. From the problem (1—-0)—u" = u, we
2 2

get the first integral H(u,v) = % + G(u) = h, where G(u) = %»«

{* du '
dv = Let h = , and let § / . Let
and v = u'. Le G(a), and let S(a) = , T e
u(0) = a =G 1(h) The problem (1 0) has infinitely many solu-
tions with R = —. If R ¢ (0, )U ,+00), the problem has no

solution.
From the description above, we have the following:

COROLLARY 1. Initial value problem —u"(z) = u(z), =z €
R, «/(0) =0, «(0) > 0 has infinitely many symmetric oscillating
periodic (hence bounded) solutions with a fixed period 2x. In
fact, these are all of the solutions.

Note that if u(0) = «, then u’(-;[) = —a. Also the phase-

portraits are filled with the concentric circles (periodic solutions)
of the fixed period 27.

3. The Case ¢ > (.

First integral of the problem (1 — &) with ¢ > 0 is H(u,v)
== % + G.(u) = h, where G¢(u) = Eusz 1e”" +£§ and v = u'.
GL(u) = ue™ > 0 for v > 0. Hence the function G, : [0,00) —
[0,00) has an inverse function. To rewrite the problem (1 — ¢)
with € > 0 as a system of the first order equation, setting v = u’,
we obtain
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!
U =v

(6)

v = —ue"

Note that H(0,0) = 0 and (0.0) is a center. We can show that

1 1
if h 2 —. then v approaches to £\ /2 (h, - ?) as a tends to £

ltbpectlw—,ly, 80, as u tends to —oo.

Also the curve is a periodic orbit for 0 < i < 51—2- Let o =
GZ1(h).

Then % = v = —/2(Ge(a) — G(u)) since % < 0 by the con-
dition (4). From the equation (1 —¢), (2), (3) and (6), u(0) = a =
GZl(h), v(0) =0, u(R) =0, v(R)=+—-2h,so

u(R) d p
x = R. 7)
/u(D) -2(G / "

Now we define S.(a):= / - Note that
V2(Ge(a) - Ge(u))

the left hand side of (7) equals to S, ( ) To prove that the prob-
lem (1—¢)—(4) has a unique positive solution, it is enough to show
that there exists a unique a € (0,0c) such that S.(¢) = R. We
investigate the properties of S.(a). Of course, S.{a) is continuous
on (0, +00).

LEMMA 2. S.(0%) = lim S.(a) =

™
a—0+ 2

Proof. Let 0 < u < a. Then

Ge(a) = Ge(u) = Ge(VB) — Ge(Vw)

1
=G {(Vw* 4 —
6( w )QW(/ w)
(for some w < w* = w*(w. ) < B)

2
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Let u* = u*(u,a) = v/s*. Then

« du
Sela) = / V3G = Culw)

_ /" du
0 efu' (az —— u?) !

_e_ga_/a du <S(C¥)</a du
o Val—u2 = 7 Jo Va@—u?

0%. Then we obtain the required result.

and e~ Now. let o —

LEMMA 3. Sl(a) <0 for all a > 0.

o4

. Let

z acos 0db
Proof. Note that S.(a) = / Ry S S
f (@) 0 V2(Gela) ~ Ge{asin8))
N (a) = Ge(a) — G.(asin®). Then R

Si(a) = -5-\17—-,2./02 N.(a)™ 3 N!(a)a cos8d6

;2 /%N( )~ % cos 6df
\/:2,0 o CcOoS .

So, 2v28!(a) = / ’ NI #(2N.(a) - N!(a)a) cos 0d6.
0

2N.(a) — Nl(a)a = 2(Ge(a) — G (asin b))
— a(GL(a) — GL(asinf)sinf)
= [2G¢(a) - aG (a)]
~ [2G¢(asinf) — G (asin 8) sin 6]
letting 7. (z) = 2G.(z) — G (z))
= Ye(@) — Ye(asin).
Ye(z) = —exe®™® < 0.

Hence 7, is strictly decreasing on (0, 0o).

.‘g. - .
Thus, 2v25%(a) = Ye(@) = ve(asinb) cos 6df < 0.
0 Ge(a)— G (asing)?
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LEMMA 4. lim S.(a) =0

- O

Proof. If we rewrite S.(q).

Si(e) = %Se(a) ~ —2.% /02 Ne(a)™ TN () cos Bdf.

wg-u

(a) 'ZNé(a)ncostﬂ
e(a) aNs(a)acosﬁdﬂ'

wla

1
'2'f

1
S.(a)  «

€ sin 9)

eN.(a) = N'(a) - %(ew —e
— asin et 8(1 — sin )

< N(a).

T
Note that o and € are positive and 0 < @ < 3

Hence

!
>s,adS()<

1._e
Ne(a) Se(a) "o 2

Integrating this differential inequality over 1 to « yields S.(a) <

;—;(%’-:r! Se(1).

From this S¢(a) — 0 as a — +o00.
This completes the proof.

From Lemma 2, Lemma 3 and Lemma 4, we have the following.

THEOREM 5. The problem (1 — ¢) — (4)(¢ > 0) has a unique

solution if and only if 0 < R < 3

Proof. By Lemmas 1-3. the range of S.(«) on the domain
(0,00) is (0, %), and from this our claim is clear.

It is obvious to prove the next corollary from the equation and

phase-portraits.
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COROLLARY 6. There is a unique solution u.(x) of the problem
v’ + ue® = 0 (z € R) satisfying the following :
1
(a)H (ue,u;) = 5 on R.
(b) im wuc(x) =~
|z|—00
(c) im ul(z)=0.
jz]—o00
1 . . _— .
(d)For each h € (0, EE)’ there exists a unique oscillating peri-

odic solution with period
T(h)~ converging 2w as h — 0%,

1
(e) For each h € ( 2,+<:~o) there exists a unique unbounded
solution u satisfying :

. 0w = fa(n L
‘xllinwu(x) oo and z}ﬂloou(x)wx, Z(h 52)

4. The Case ¢ < 0.

Situations are almost similar as in §3 except the sign of €, which
is negative here. H,G. and S, are same as in the previous
section.

T+
LEMMA 7. 8.(0%) := lin(;l+ Se(a) = 7
a—

Proof. Let 0 < u < . Then
Ge(a) - \/’ B) — G (Vw)

( for some w < w* = w*(w,f) < P)

E\/l—;'-(az o u2)
=e .2
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Then

/'a u / @ du
(Y) = = = .
Jo 2(G:(a) = Ge(u)) 0o Ve (a? - u?)
and
@ du e / du
Va2 — 'u2 - Vi — Vi w2
Now, let a — 0%. Then we obtain the required result.

LEMMA 8. Sl(a) > 0 for all « > 0.

Proof. Note that S, ( / NG a“"’e‘w o . Let
e(asin
Ne(a) = Ge(@) — Ge(asinf). Then

S () = ”5’% /02 N ()™ 2 N!(a)a cos 6df

1 [% L
+ — N (ax)” 2 cos 6df.
\/5/0\ 6( )
So,

2v28!(a) = /2 N;%(ZNE‘(a) — Nl(a)a) cos 8db.
0

2N (o) — N (a)a = 2(G(a) — G.(asin b))
- a(GL(a) — GL(asinf)sinb)
~ [2G.(a) - aG'(a)]
— [2G¢(xsinf) — G (asin#) sin 0]
(letting ~.(x) = 2G.(x) — xGL(x))
= Ye(@) = Ye(asing).

Y.(z) = —exe™ > 0.
Hence 7, is strictly increasing on (0, 00).
Thus,

2v25.(a / f(a) "’E “""“0)& cos 6d6 > 0.
Ge( G:(asinf)?
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LEMMA 9. limg o Se(a) =

Proof. In the proof of Lemma 7.

Se(a) =

/\/2(G’ (a) — Ge(u)) /m

for some 0 < u < u* = u*(u,a) < a.
Hence

e"%du % 5_9_%@_@
———= [ e de.
0o va© — u? 0

Last integral grows without bounds as « tends to infinity.
This completes the proof.

From Lemma 7, Lemma 8 and Lemma 9, we have the following.

THEOREM 10. The problem (1 €)—(4) (e < 0) has a unique

solution if and only if T 5 < R < +00.

Proof. By Lemma 7-9, the range of S.(c) on the domain (0, c0)
is (3, +00), and from this our claim is clear.
COROLLARY 11. There is a unique solution u.(z) of the prob-
lem v” + ue®™ = 0 (z € R) satisfying the following :
(a)H (ue,u) = }5 on R.
(b) lim wu(z) = +oc.
|z]—o0
(c) lim u.(z) =
jz|— o0

(d)For each h € (0, -&:15), there exists a unique oscillating peri-
odic solution with period
T(h)* converging 2m as h — 0.
(e) For each h € (;2—,4-00), there exists a unique unbounded
solution u satisfying :

lim u(z) = +oc and lim u'(z) = £,/2 (h - 21;5)

lz|—00 - too
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