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Abstract Applications of a colun-reduced orthogonal rational matrix
function to McMillan degrees and Wiener-Hopf factorizations are considered.

1. Introduction

For a subset o of the complex plane and an m x m constant
matrix V such that VT = aV, a = +1, let

UJ:(C.,,C+,AW;A<,B+,B,;F) (11)

be an admissible interpolation data set [3] of sizes M X1y, M X1y,
T X Mg, N XN, e X M, e X M, ny X g, respectively, for which

ie., & is similar to T, where

@ = ([gj} Ay Ac.[By, B_JT). (1.2

That is, & defined by (1.2) is a o-admussible Sylvester data set such
that the union of the spectrums o(A,) U o(A¢) is a subset of o,

g1
(Cr, Ay) is a null-kernel pair, i.e, ﬂ Ker Cr Al = {0}, (Cr, Ar)

J=0
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Thg — 1
1s a null-kernel pair, i.e, n Ker Cr A7 = {0}, (Ac. Be) is a full-
7=0 |
ng—1 :
range pair, i.e, Z Im A} B, = C*, and T satisfies the matrix
J=0

equation FA, — Al = B¢Cyr, where Cr = [CLC_] and B; =
(B4+.B_]. For a given 7, we associate another set of matrices 77 =
(«V‘lBg, AT AT CTV, TT). Two o-admissible data sets 7 =
(Cr, Ary Ac,Be; 1) and 7/ = (C, AL, A’C.Bé; I'") are similar
if there exist invertible matrices ® and ¥ such that Cr = C)®,
Ar = @7 1AL, A, = \If”lAe\Il, B, = \P"Bé, and T = U119,
If we want to emphasize the matrices ® and ¥ we say that 7 is
(®, ¥)-similar to 7. If 7 is similar to 77, 7 is said to be symmetric
and is (®, a®7) - similar to 77 for an invertible matrix ® (see [7]).
For an M x M rational matrix function &(z) and a Sylvester data
set 7, © is said to have 7 as its C-null-pole triple if

OPy = {Cr(2] — Ag) o + h(z) |z € C*, h € Py such that

Z Res,= (2] — Ac}'lth(z) =TIz},
ZQEC

where P)s is the set of polynomials with coefficients in CM. In
[8], Kim proved the following results.

THEOREM 1.1. If 7 is a given o-admissible Sylvester data set
which is similar to T, then there exists an-m x m rational matrix
function ©(z) for which © has r as its C-null-pole triple, © is
column reduced at infinity, 7 (2)VO(z) = P, Yz € Co, where
P = [pi;] is an m x m constant matrix with

1, 1<i<[8), j=m+1-i
pij =4 o [Fl<i<m, j=m+1-1,
0, otherwise,

where for a real number s, [s] denotes the largest integer not
exceeding s. In this case the column indices of © are

—C¥y, —Qg, g, (),"‘30 2 gy, O,
oo, pm—

{m.—2t) times
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where vy > -+ > «y are the nonzero observahility indices of

(Cr, Ag).

A rational matrix function satisfying (1.5) is said to be V' -
orthogonal.

In this paper, we consider some applications of Theorem 1.1
to a nonhomogeneous interpolation problem to find the minimal
possible McMillan degree [5] of symmetric interpolants and to
Wiener-Hopf factorizations.

2. Applications

THEOREM 2.1. Let w be defined by (1.1) with the property
(1.2) and Fp,;» be a minimal interpolating function of w. Then
the McMillan degree of Fiy, denoted hy 6(F,.;n), Is given by

M

§(Fmin) = by + Z Ki,»
=1

where k;, are the column indices of ©(z) constructed as in Theo-
rem 1.1 with & instead of .

Proof. The theorem can be obtained by applying (5] and [7] to
Theorem 1.1.

REMARK 2.2. (a) Finding a minimal interpolant for a given
admissible interpolation data set without the extra constraint w ~
T was studied in [1] and [2]. The first one is concerned with the
scalar case and the second addresses about the matrix case.

(b) Since the sum of the observability indices of the pair ( [g+ ] .

Ay) is equal to n, , the size of A,.

0 < 8(Frin) < 27
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THEOREM 2.3. If ©(z) is an m x m rational matrix function
satisfying
eT(2)Ve(z) =V.

then there exists a Wiener-Hopf factorization of ©(z) at infinity
which is given by

O(z) = ©_(2)D{2)04(2) (2.1)
where
D(z) = diag(z™®,--+ .27% 1,--- |1, 2%, ..., 2%)

and oy > --- > a4 are nonzero observability indices of a C-pole
pair of ©(z). Moreover

eTve. =P

and
otpre, =V,

where P is as in Theorem 1.1.

Proof. If we assume 7 is a C-null-pole triple of ©(z), T is similar
to 77, With 7, we construct an sn x m rational matrix function
as in Theorem 1.1 so that

elvey, =V,
©g has 7 as its C — null-pole triple,
B¢ is column reduced at infinity.

Then, ©¢(z) is factored as
@0(2) =0_ (Z)D(Z), ' (22)
where ©_(z) is biproper,

D(Z) - diag(z—al"'. "Z“atvl*"' w:i«y Zat-"' ’Zﬂl),



Applications of rational matrix function 107

and oy > --- > a4 are the nonzero controllabilitv (observability)
indices of 7 at infinity by the construction of ©y(2) in Theorem
1.1. Tt can be easily seen that

eflve. =P (2.3)
from (2.2) and the fact that
P=08lve,=DTe’ve_D

and
DPD = P. (2.4)

To show (2.1), we note that there exists an unimodular matrix
function ©,(z) for which

B(z) = B0(2)04(2)

because ©(z) and ©y(z) have the same C-null-pole triple. From
the above equality and O VO, = P, we have

efre, =V

REMARK 2.4. For the details of Wiener-Hopf factorization of
a rational matrix functions, readers are referred to [6]. Wiener
-Hopf factorization of a rational matrix function which is colmn
reduced at infinity but not necessarily V-orthogonal is studied in

[4].
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