APPLICATIONS OF A COLUMN-REDUCED ORTHOGONAL RATIONAL MATIRX FUNCTION

JEONGOOK KIM

Dept of Mathematics.

Chonnam National University, Kwangju 500-757, Korea.

E-mail: jkim@chonnam.chonnam.ac.kr.

Abstract Applications of a column-reduced orthogonal rational matrix function to McMillan degrees and Wiener-Hopf factorizations are considered.

1. Introduction

For a subset σ of the complex plane and an $m \times m$ constant matrix V such that $V^T = \alpha V$, $\alpha = \pm 1$, let

$$\omega = (C_{-}, C_{+}, A_{\pi}; A_{\zeta}, B_{+}, B_{-}; \Gamma)$$
(1.1)

be an admissible interpolation data set [3] of sizes $M \times n_{\pi}$, $M \times n_{\pi}$, $n_{\pi} \times n_{\pi}$, $n_{\zeta} \times n_{\zeta}$, $n_{\zeta} \times M$, $n_{\zeta} \times M$, $n_{\pi} \times n_{\zeta}$, respectively, for which

$$\hat{\omega} \sim \hat{\omega}^T$$
.

i.e., $\hat{\omega}$ is *similar* to $\hat{\omega}^T$, where

$$\hat{w} = (\begin{bmatrix} C_+ \\ C_- \end{bmatrix}, A_{\pi}; A_{\zeta}, [B_+, B_-]; \Gamma). \tag{1.2}$$

That is, $\hat{\omega}$ defined by (1.2) is a σ -admissible Sylvester data set such that the union of the spectrums $\sigma(A_{\pi}) \cup \sigma(A_{\zeta})$ is a subset of σ ,

$$(C_{\pi}, A_{\pi})$$
 is a null-kernel pair, i.e, $\bigcap_{j=0}^{n} \operatorname{Ker} C_{\pi} A_{\pi}^{j} = \{0\}, (C_{\pi}, A_{\pi})$

Received April 2, 2002.

¹⁹⁹¹ AMS Subject Classification: 15, 93.

Key words and phrases: orthogonal rational matirx function, McMillan degree, Wiener-Hopf factorization.

is a null-kernel pair, i.e. $\bigcap_{j=0}^{n_{\pi}-1} \operatorname{Ker} C_{\pi} A_{\pi}^{j} = \{0\}, (A_{\zeta}, B_{\zeta})$ is a full-range pair, i.e. $\sum_{j=0}^{n_{\zeta}-1} \operatorname{Im} A_{\zeta}^{j} B_{\zeta} = \mathbb{C}^{n_{\zeta}}$, and Γ satisfies the matrix

equation $\Gamma A_{\pi} - A_{\zeta} \Gamma = B_{\zeta} C_{\pi}$, where $C_{\pi} = [C_{+} C_{-}]$ and $B_{\zeta} =$ $[B_+, B_-]$. For a given τ , we associate another set of matrices $\tau^T =$ $(-V^{-1}B_{\zeta}^{T}, A_{\zeta}^{T}; A_{\pi}^{T}, C_{\pi}^{T}V; \Gamma^{T})$. Two σ -admissible data sets $\tau = (C_{\pi}, A_{\pi}; A_{\zeta}, B_{\zeta}; \Gamma)$ and $\tau' = (C'_{\pi}, A'_{\pi}; A'_{\zeta}, B'_{\zeta}; \Gamma')$ are similar if there exist invertible matrices Φ and Ψ such that $C_{\pi} = C'_{\pi}\Phi$, $A_{\pi} = \Phi^{-1}A'_{\pi}\Phi$, $A_{\zeta} = \Psi^{-1}A'_{\zeta}\Psi$, $B_{\zeta} = \Psi^{-1}B'_{\zeta}$, and $\Gamma = \Psi^{-1}\Gamma'\Phi$. If we want to emphasize the matrices Φ and Ψ we say that τ is (Φ, Ψ) -similar to τ' . If τ is similar to τ^T , τ is said to be summetric and is $(\Phi, \alpha \Phi^T)$ - similar to τ^T for an invertible matrix Φ (see [7]). For an $M \times M$ rational matrix function $\Theta(z)$ and a Sylvester data set τ , Θ is said to have τ as its \mathbb{C} -null-pole triple if

$$\Theta P_M = \{ C_{\pi} (zI - A_{\pi})^{-1} x + h(z) \mid x \in \mathbb{C}^{n_{\pi}}, h \in P_M \text{ such that}$$

$$\sum_{z_0 \in \mathbb{C}} Res_{z=z_0} (zI - A_{\zeta})^{-1} B_{\zeta} h(z) = \Gamma x \},$$

where P_M is the set of polynomials with coefficients in \mathbb{C}^M . In [8], Kim proved the following results.

THEOREM 1.1. If τ is a given σ -admissible Sylvester data set which is similar to τ^T , then there exists an $m \times m$ rational matrix function $\Theta(z)$ for which Θ has τ as its \mathbb{C} -null-pole triple, Θ is column reduced at infinity, $\Theta^T(z)V\Theta(z) = P, \forall z \in \mathbb{C}_{\infty}$, where $P = [p_{ij}]$ is an $m \times m$ constant matrix with

$$p_{ij} = \begin{cases} 1, & 1 \le i \le \left[\frac{m}{2}\right], & j = m+1-i, \\ \alpha, & \left[\frac{m}{2}\right] < i \le m, & j = m+1-i, \\ 0, & otherwise, \end{cases}$$

where for a real number s, [s] denotes the largest integer not exceeding s. In this case the column indices of Θ are

$$-\alpha_1, -\alpha_2, \cdots, -\alpha_t, \underbrace{0, \cdots, 0}_{(m-2t) \text{ times}}, \alpha_t, \cdots, \alpha_1,$$

where $\alpha_1 \geq \cdots \geq \alpha_t$ are the nonzero observability indices of (C_{π}, A_{π}) .

A rational matrix function satisfying (1.5) is said to be V -orthogonal.

In this paper, we consider some applications of Theorem 1.1 to a nonhomogeneous interpolation problem to find the minimal possible McMillan degree [5] of symmetric interpolants and to Wiener-Hopf factorizations.

2. Applications

THEOREM 2.1. Let ω be defined by (1.1) with the property (1.2) and F_{min} be a minimal interpolating function of ω . Then the McMillan degree of F_{min} , denoted by $\delta(F_{min})$, is given by

$$\delta(F_{min}) = n_{\pi} + \sum_{j=1}^{M} \kappa_{i_{j}},$$

where κ_{i_j} are the column indices of $\Theta(z)$ constructed as in Theorem 1.1 with $\hat{\omega}$ instead of τ .

Proof. The theorem can be obtained by applying [5] and [7] to Theorem 1.1.

REMARK 2.2. (a) Finding a minimal interpolant for a given admissible interpolation data set without the extra constraint $\hat{\omega} \sim \hat{\omega}^T$ was studied in [1] and [2]. The first one is concerned with the scalar case and the second addresses about the matrix case.

(b) Since the sum of the observability indices of the pair $(\begin{bmatrix} C_+ \\ C_- \end{bmatrix}$. $A_\pi)$ is equal to n_π , the size of A_π .

$$0 \leq \delta(F_{min}) \leq 2n_{\pi}$$
.

THEOREM 2.3. If $\Theta(z)$ is an $m \times m$ rational matrix function satisfying

$$\Theta^T(z)V\Theta(z) = V,$$

then there exists a Wiener-Hopf factorization of $\Theta(z)$ at infinity which is given by

$$\Theta(z) = \Theta_{-}(z)D(z)\Theta_{+}(z) \tag{2.1}$$

where

$$D(z) = diag(z^{-\alpha_1}, \cdots, z^{-\alpha_t}, 1, \cdots, 1, z^{\alpha t}, \cdots, z^{\alpha_1})$$

and $\alpha_1 \geq \cdots \geq \alpha_t$ are nonzero observability indices of a \mathbb{C} -pole pair of $\Theta(z)$. Moreover

$$\Theta_{-}^{T}V\Theta_{-}=P$$

and

$$\Theta_{+}^{T}P\Theta_{+}=V,$$

where P is as in Theorem 1.1.

Proof. If we assume τ is a C-null-pole triple of $\Theta(z)$, τ is similar to τ^T . With τ , we construct an $m \times m$ rational matrix function as in Theorem 1.1 so that

$$\Theta_0^T V \Theta_0 = V,$$

 Θ_0 has τ as its \mathbb{C} – null-pole triple,

 Θ_0 is column reduced at infinity.

Then, $\Theta_0(z)$ is factored as

$$\Theta_0(z) = \Theta_-(z)D(z),\tag{2.2}$$

where $\Theta_{-}(z)$ is biproper,

$$D(z) = \operatorname{diag}(z^{-\alpha_1}, \cdots, z^{-\alpha_t}, 1, \cdots, 1, z^{\alpha t}, \cdots, z^{\alpha_1}),$$

and $\alpha_1 \geq \cdots \geq \alpha_t$ are the nonzero controllability (observability) indices of τ at infinity by the construction of $\Theta_0(z)$ in Theorem 1.1. It can be easily seen that

$$\Theta_{-}^{T}V\Theta_{-} = P \tag{2.3}$$

from (2.2) and the fact that

$$P = \Theta_0^T V \Theta_0 = D^T \Theta_-^T V \Theta_- D$$

and

$$DPD = P. (2.4)$$

To show (2.1), we note that there exists an unimodular matrix function $\Theta_{+}(z)$ for which

$$\Theta(z) = \Theta_0(z)\Theta_+(z)$$

because $\Theta(z)$ and $\Theta_0(z)$ have the same \mathbb{C} -null-pole triple. From the above equality and $\Theta_0^T V \Theta_0 = P$, we have

$$\Theta_{+}^{T}P\Theta_{+}=V.$$

REMARK 2.4. For the details of Wiener-Hopf factorization of a rational matrix functions, readers are referred to [6]. Wiener-Hopf factorization of a rational matrix function which is colum reduced at infinity but not necessarily V-orthogonal is studied in [4].

References

- A.C. Antoulas and B.D.O. Anderson, On the scalar rational interpolation problem, IMA J. Math. Control and Information 3 (1986), 61–88.
- 2. A.C. Antoulas, J.A. Ball, J.A. Kang(Kim), and J.C. Willems. On the solution of the minimal interpolation problem, Linear Alg. and Appl. 137/138 (1990), 511-573.
- J.A. Ball, I. Gohberg, and L. Rodman, Interpolation of Rational Matrix Functions, Birkhauser OT 45, Basel, 1990.
- 4. J.A. Ball, M.A. Kaashoek, G. Groenewald, and J. Kim. Column reduced rational matrix functions with given null-pole data in the complex plane. Linear Alg. and Appl. 203/204 (1994), 67-110.

- J.A. Ball, J. Kim, L. Rodman, and M. Verma, Minimal degree coprime factorizations of rational matrix functions, Linear Alg. and Appl. 186 (1993), 117-164.
- H. Bart, I. Gohberg, and M.A. Kaashoek, Explicit Wiener-Hopf factorization and realization, in Constructive Methods of Wiener-Hopf Factorization (I. Gohberg and M.A. Kaashoek ed.). Birkh- auser Verlag OT 21, Basel, 1986, p. 235-316.
- 7. J. A. Ball and J. Kim, Bitangential interpolation problems for symmetric rational matrix functions, Linear Alg. and Appl. 241-243 (1996), 113-152.
- 8. J. Kim, A column reduced V-orthogonal rational matrix function with the prescribed null-pole structure in the complex plane, Preprint, 2002.