NIELSEN TYPE NUMBERS FOR PERIODIC POINTS ON THE COMPLEMENT

IN TAIK LIM

Dept. of Mathematices. Chosun University. Chosun University, Kwangju 501-759, Korea, E-mail: itlim @ chosun.ac.kr.

Abstract A Nielsen number $\overline{N}(f:X-A)$ is a homotopy invariant lower bound for the number of fixed points on X-A where X is a compact connected polyhedron and A is a connected subpolyhedron of X. This number is extended to Nielsen type numbers $\overline{NP_n}(f:X-A)$ of least period n and $\overline{N\phi_n}(f:X-A)$ of the nth iterate on X-A where the subpolyhedron A of a compact connected polyhedron X is no longer path connected.

1. Introduction

The Nielsen number N(f) is a homotopy invariant lower bound for the number of fixed points on a compact connected polyhedron X for a map $f: X \to X$. In [8], Nielsen fixed point theory was extended to a map $f: (X,A) \to (X,A)$ on a pair of polyhedra. A Nielsen number $\overline{N}(f:X-A)$ was introduced in [7], which is a homotopy invariant lower bound for the number of fixed points on X-A for a map $f: (X,A) \to (X,A)$.

A Nielsen type number of least period n, denoted by $NP_n(f)$, is a lower bound for the number of periodic points for a map $f: X \to X$, and a Nielsen type number of the nth iterate, denoted by $N\phi_n(f)$, is lower bound for the number of fixed points of the nth iterate $f^n: X \to X$. These Nielsen type numbers were introduced in [6], and studied for the selfmaps of a path connected compact ANR in [2,5] and for the selfmaps of a non-path connected compact ANR in [3].

Received May 1, 2002.

¹⁹⁹¹ AMS Subject Classification: 55M20.

Key words and phrases: periodic point, Nielsen type number.

This study was supported by Research Funds from chosun University 2001.

The definition of the Nielsen number $\overline{N}(f:X-A)$ suggests that the definitions of Nielsen type numbers on X-A of period n for a map $f:(X,A)\to (X,A)$ have the structure of the following formulae:

$$\overline{NP_n}(f:X-A) = NP_n(f) - NP_n(f,\overline{f})$$

$$\overline{N\phi_n}(f:X-A) = N\phi_n(f) - N\phi_n(f,\overline{f}).$$

In this paper, X is a compact connected polyhedron and the subpolyhedron A of X is no longer path connected, and f: $(X,A) \to (X,A)$ is a given selfmap. We will define the Nielsen type numbers $\overline{NP_n}(f:X-A)$ and $\overline{N\phi_n}(f:X-A)$ and prove their some properties.

2. Preliminaries

Let $f: X \to X$ be a map of a compact connected polyhedron. A point $x \in X$ is called a periodic point of period n if $f^n(x) = x$. We write $Fix(f^n)$ for the set of periodic points of a map $f: X \to \mathbb{R}$ X. Let $P_n(f) = Fix(f^n) - \bigcup_{m < n} Fix(f^m)$ denote the set of periodic points of least period n. We denote the fundamental group of X based at x_0 by $\pi := \pi_1(X, x_0)$. Let $w: I \to X$ be a path from x_0 to $f(x_0)$ and $nw: I \to X$ be a path from x_0 to $f^n(x_0)$ defined by $nw = w + f(w) + \cdots + f^{n-1}(w)$. We define a homomorphism $f^{nw}:\pi\to\pi$ by $f^{nw}(\alpha)=nw+f^n(\alpha)-nw$ for $\alpha\in\pi$. We define an equivalence relation \sim on π by $\alpha \sim \alpha'$ if there exists a $\beta \in \pi$ such that $\alpha = \beta + \alpha' - f^{nw}(\beta)$. The quotient set of this equivalence relation, denoted by $Coker(1-f^{nw})$, is the set of periodic point classes of f^n and the element is denoted by $[\alpha]^n$ for $\alpha \in \pi$ ([2],[5],[6]). The homomorphism $f^w: \pi \to \pi$ induces an index preserving function $[f^w]: Coker(1-f^{nw}) \to Coker(1-f^{nw})$ defined by $[f^w][\alpha]^n = [f^w \alpha]^n$ (See [2], p.96 Corollary 1). Let l be the smallest integer such that $[f^w]^l[\alpha]^n = [\alpha]^n$ for $[\alpha]^n \in Coker(1 - \alpha)^n$ f^{nw}). Then $\langle [\alpha]^n \rangle = \{ [\alpha]^n, [f^w][\alpha]^n, \cdots, [f^w]^{l-1}[\alpha]^n \}$ is called the orbit (algebraic orbit) of $[\alpha]^n \in Coker(1-f^{nw})$ and l is called the length of the orbit $< [\alpha]^n >$. For m|n, a function $L_{m,n} = 1 + f^{mw} + \cdots + f^{(n-m)w} : \pi \to \pi$ induces a function $[L_{m,n}]: Coker(1-f^{mw}) \to Coker(1-f^{nw})$. We say that

 $[\alpha]^n \in Coker(1-f^{nw})$ is reducible to m if there exists a $[\beta]^m \in Corker(1-f^{mw})$ such that $[L_{m,n}][\beta]^m = [\alpha]^n$. The depth of $[\alpha]^n$, denoted by $d([\alpha]^n)$, is the smallest positive integer m to which $[\alpha]^n$ is reducible. Let d be the depth of $[\alpha]^n$ and l be the length of an orbit $< [\alpha]^n >$.

We notice that d|n and l|d, and that the depth of any element of an orbit $< [\alpha]^n >$ is d. Now we can define the depth of the orbit $< [\alpha]^n >$ by $d(< [\alpha]^n >) = d([\alpha]^n)$ ([2]). $[\alpha]^n$ is said to be irreducible if $d([\alpha]^n) = n$.

Let $O_n(f)$ denote the set of all orbits and $IEO_n(f)$ denote the set of all irreducible essential orbits in $Coker(1-f^{nw})$. The height of $IEO_n(f)$, denoted by $h(IEO_n(f))$, is defined to be the sum of the depths of all orbits in $IEO_n(f)$. The Nielsen type number of least period n is defined by $NP_n(f) = h(IEO_n(f))$ ([2],[5],[6]).

Let $X_i (i=1,2,\cdots,l)$ be components of a compact polyhedron X and $f:X\to X$ be a map. $\{X_1,X_2,\cdots,X_l\}$ is called a f-cycle in X if $f(X_i)\subseteq X_{i+1}$ for $i=1,2,\cdots,l-1$ and $f(X_l)\subseteq X_1$. We call l the length of the cycle, and denote the cycle by $[X_i]$. We define an equivalence relation \sim on $J_r=\{1,2,\cdots,r\}$ by $i\sim j$ if i=j or $[X_i]=[X_j]$. We denote the equivalence class of $i\in J_r$ by [i] and the set of equivalence classes of J_r by c(f). Let c(i) be the length of $[X_i]$. We shall write the selfmap on X_k by $f_k^{c(i)}:X_k\to X_k$ for $[X_i]$ and $k\in [i]$. The Nielsen type number of least period n, $NP_n(f)$ is defined by

$$NP_n(f) = \sum_{[i] \in c(f)} c(i) NP_{n/c(i)}(f_k^{c(i)}) \qquad ([3]).$$

3. The Nielsen type numbers on X - A

Let X be a compact connected polyheron and let A be a nonpath-connected subpolyhedron of X. Let $f:(X,A)\to (X,A)$ be a map $f:X\to X$ such that $f(A)\subset A$ and $\overline{f}=f|A:A\to A$. We denote the path component of A by A_j and write $\overline{f_j}=f|A_j:A_j\to A_k$ for the restriction of f to A_j . Let $\nu:A\to X$ be the inclusion. We take a base point $x_0\in A_k\subset X$ for a cycle $[A_j]$ and $k\in [i]$. Then ν induces a homomorphism $\nu_\pi:\pi_1(A_k,x_0)\to\pi_1(X,x_0)$. Let $w:I\to X$ be a path from x_0 to $f(x_0)$ and $\overline{w}:I\to A$ be a path from

 x_0 to $\overline{f}(x_0)$. Then ν_{π} induces a function $\nu_*: Coker(1-\overline{f_k}^{n\overline{w}}) \to Coker(1-f^{nw})$ where $\overline{f_k}^{n\overline{w}} = (\overline{f_k}^{c(i)})^{n/c(i)\overline{w}}$ for any $[i] \in c(f)$ and $k \in [i]$, and ν_* induces a function $<\nu_*>: O_n(\overline{f}) \to O_n(f)$.

DEFINITION 1. $[\alpha]^n \in Coker(1-f^{nw})$ is called a common n-periodic point class of f and \overline{f} if there exists an essential n-periodic point class $[\overline{\alpha}]^n$ in $Coker(1-\overline{f_k}^{n\overline{w}})$ such that $\nu_*([\overline{\alpha}]^n) = [\alpha]^n$. It is an irreducible, essential common n-periodic point class which is itself irreducible and essential ([4]).

LEMMA 2. Let l=c(i) be the length of a \overline{f} -cycle $[A_i]$ and k be an integer in [i]. For the functions $[f^{lw}]: Coker(1-f^{nw}) \to Coker(1-f^{nw})$ and $[\overline{f_k}^{l\overline{w}}]: Coker(1-\overline{f_k}^{n\overline{w}}) \to Coker(1-\overline{f_k}^{n\overline{w}})$, we have $[f^{lw}]\nu_* = \nu_*[\overline{f_k}^{l\overline{w}}]$.

Proof. Let lm = n. For any $[\overline{\alpha}]^n \in Coker(1 - \overline{f_k}^{n\overline{w}})$, we have $[f^{lw}]\nu_*[\overline{\alpha}]^n = [f^{lw}][\alpha]^n = [f^{lw}\alpha]^m$ and $\nu_*[\overline{f_k}^{l\overline{w}}][\overline{\alpha}]^n = \nu_*[\overline{f_k}^{l\overline{w}}\overline{\alpha}]^m = [f^{lw}\alpha]^m$. Hence we have the result.

PROPOSITION 3. Let $[A_i]$ be a \overline{f} -cycle with the length c(i) = l and $k \in [i]$. If $[\alpha]^n \in Coker(1 - f^{nw})$ is an irreducible, essential common n-periodic point class of f and \overline{f} , then $[f^{lw}][\alpha]^n$ is an irreducible, essential common n-periodic point class of f and \overline{f} .

Proof. The inclusion $\nu:A_k\to X$ is a morphism from $\overline{f_k}^l:A_k\to A_k$ to $f^l:X\to X$ (See [4], p.120). By Lemma 2, we have $\nu_*[\overline{f_k}^{l\overline{w}}][\overline{\alpha}]^n=[f^{lw}]\nu_*[\overline{\alpha}]^n=[f^{lw}][\alpha]^n$. So $[f^{lw}][\alpha]^n$ is common. Since $[f^{lw}]$ is an index preserving bijection (See [3] Proposition 2.1), $[f^{lw}][\alpha]^n$ is essential. Since $[\alpha]^n$ is irreducible, by [2, Lemma 1.12] $[f^{lw}][\alpha]^n$ is irreducible.

Let $IEO_n(f, \overline{f})$ denote the set of all irreducible, essential common *n*-orbits of f and \overline{f} in $Coker(1-f^{nw})$. By Proposition 3, we define

$$NP_n(f,\overline{f}) = n \times \#(IEO_n(f,\overline{f}))$$

where the symbol # denote the cardinality. Let $EO_n(\overline{f})$ denote the set of all essential n-orbits in $Coker(1-\overline{f}^{n\overline{w}})$. We notice that for $k \in [i]$

$$\begin{split} IEO_n(f,\overline{f}) &= IEO_n(f) \cap (<\nu_* > (EO_n(\overline{f})) \\ &= IEO_n(f) \cap (\bigcup_{[i] \in c(f)} l \cdot EO_m(\overline{f_k}^l)) \end{split}$$

where n = c(i)m = lm. Let $\overline{T}_n(f : X - A) = IEO_n(f) - IEO_n(f, \overline{f})$.

Definition 4. $\overline{NP_n}(f:X-A)=h(\overline{T}_n(f:X-A))=NP_n(f)-NP_n(f,\overline{f}).$

THEOREM 5. (Homotopy invariance) If the maps $f, g: (X, A) \to (X, A)$ are homotopic, then $\overline{NP_n}(f: X - A) = \overline{NP_n}(g: X - A)$.

Proof. Let $H: f \simeq g: (X,A) \to (X,A)$ be a homotopy. Then H induces a homotopy $H^n: f^n \simeq g^n$. We write $\overline{H} = H|A \times I$ for the restriction of H to $A \times I$. Let $n\nu = nw + H^n(x_0, -)$ be a path from x_0 to $g^n(x_0)$ and $n\overline{\nu} = n\overline{w} + \overline{H}^n(x_0, -)$ be a path from x_0 to $\overline{g}^n(x_0)$. Then H^n induces an index preserving bijection $H^n_*: Coker(1-f^{nw}) \to Coker(1-g^{n\nu})$ such that the following diagram is commutative:

(See [1] Proposition 3.3 and [2] Proposition 2.2).

Let $[A_i]$ be a \overline{f} -cycle with the length c(i) = l. Let m = ls and n = lt for m|n. We put $\overline{f_k}^l = \overline{f_0}$ and $\overline{g_k}^l = \overline{g_0}$ for any $k \in [i]$. Then \overline{H} induces a homotopy $\overline{H_0} : \overline{f_0} \simeq \overline{g_0} : A_k \to A_k$ such that the following diagrams (D_2) and (D_3) are commutative:

$$\begin{array}{cccc} Coker(1-\overline{f_0}^{s\overline{w}}) & \xrightarrow{[L_{s,t}]} & Coker(1-\overline{f_0}^{t\overline{w}}) & \xrightarrow{[\overline{f_0}^{\overline{w}}]} & Coker(1-\overline{f_0}^{t\overline{w}}) \\ (D_2) & \overline{H_0}^s_* & & \overline{H_0}^t_* & & \overline{H_0}^t_* & \\ & & \overline{Coker}(1-\overline{g_0}^{s\overline{\nu}}) & \xrightarrow{[L_{s,t}]} & Coker(1-\overline{g_0}^{t\overline{\nu}}) & \xrightarrow{[\overline{g_0}^{\overline{\nu}}]} & Coker(1-\overline{g_0}^{t\overline{\nu}}) \end{array}$$

and

(See [3] diagrams (6),(7)).

Since H_*^n is an index preserving bijection and the diagram (D_1) is commutative, H_*^n induces a bijection $\langle H_*^n \rangle$: $IEO_n(f) \to IEO_n(g)$. So we have $NP_n(f) = NP_n(g)$.

Since the diagrams (D_2) and (D_3) are commutative, H_*^n induces a bijection $\langle H_*^n \rangle^{\#}$: $IEO_n(f,\overline{f}) \to IEO_n(g,\overline{g})$. So we have $NP_n(f,\overline{f}) = NP_n(g,\overline{g})$. Hence we get $\overline{NP_n}(f:X-A) = \overline{NP_n}(g:X-A)$.

THEOREM 6. (Commutativity) If $f:(X,A) \to (Y,B)$ and $g:(Y,B) \to (X,A)$ are maps, then $\overline{NP_n}(g \circ f:X-A) = \overline{NP_n}(f \circ g:Y-B)$.

Proof. By ([6] III Theorem 3.4 (ii)), f induces an index preserving bijection $f_*: Coker(1-(g\circ f)^{nw}) \to Coker(1-(f\circ g)^{nf(w)})$ such that the following diagram is commutative:

$$\begin{array}{ccc} Coker(1-(g\circ f)^{mw}) & \xrightarrow{f_{\star}} & Coker(1-(f\circ g)^{mf(w)}) \\ & & & & & & \\ [L_{m,n}] \downarrow & & & & \\ Coker(1-(g\circ f)^{nw}) & \xrightarrow{f_{\star}} & Coker(1-(f\circ g)^{nf(w)}) \\ & & & & & \\ [(g\circ f)^{w}] \downarrow & & & & \\ & & & & \\ \hline \end{array}$$

 $Coker(1-(g\circ f)^{nw}) \xrightarrow{f_*} Coker(1-(f\circ g)^{nf(w)})$

where w is a path from x_0 to $g \circ f(x_0)$.

Then f_* induces a bijection $\langle f_* \rangle : IEO_n(g \circ f) \to IEO_n(f \circ g)$. So we have $NP_n(g \circ f) = NP_n(f \circ g)$.

By the similar argument in Theorem 5, we have $NP_n(g \circ f, \overline{g} \circ \overline{f}) = NP_n(f \circ g, \overline{f} \circ \overline{g})$. Hence we get $\overline{NP_n}(g \circ f : X - A) = \overline{NP_n}(f \circ g : Y - B)$.

THEOREM 7. (Homotopy type invariance) Let (X, A) and (Y, B) have the same homotopy type. If $f: (X, A) \to (X, A)$ and $g: (Y, B) \to (Y, B)$ are two self-maps, then $\overline{NP_n}(f: X - A) = \overline{NP_n}(g: Y - B)$.

Proof. There is a homotopy equivalence $h:(X,A)\to (Y,B)$ such that $h\circ f\simeq g\circ h$. Let $k:(Y,B)\to (X,A)$ be a homotopy inverse of h. Then $k\circ h\simeq 1_X$ and $h\circ k\simeq 1_Y$. So we get $(k\circ h)\circ f\simeq f$ and $g\circ (h\circ k)\simeq g$. By Thoerem 5 and Theorem 6, we have the following:

$$NP_n(f) = NP_n((k \circ h) \circ f) = NP_n((h \circ f) \circ k)$$

= $NP_n((g \circ h) \circ k) = NP_n(g)$

and

$$NP_{n}(f,\overline{f}) = NP_{n}((k \circ h) \circ f, (\overline{k} \circ \overline{h}) \circ \overline{f})$$

$$= NP_{n}((h \circ f) \circ k, (\overline{h} \circ \overline{f}) \circ \overline{k})$$

$$= NP_{n}((g \circ h) \circ k, (\overline{g} \circ \overline{h}) \circ \overline{k}) = NP_{n}(g, \overline{g}).$$

Hence we have

$$\overline{NP_n}(f:X-A) = \overline{NP_n}(g:Y-B).$$

THEOREM 8. (Lower bound property) $f:(X,A) \to (X,A)$ has at least $\overline{NP_n}(f:X-A)$ n-periodic points on X-A.

Proof. Every orbit $< [\alpha]^n > \text{in } \overline{T}_n(f:X-A)$ is essential. By ([5] Proposition 2.1), $< [\alpha]^n > \text{contains at least } d(< [\alpha]^n >)$ n-periodic points. Hence f has at least $h(\overline{T}_n(f:X-A)) = \overline{NP_n}(f:X-A)$ n-periodic points on X-A.

EXAMPLE 9. Let X be a simply connected polyhedron and $f:(X,A)\to (X,A)$ be a map. Then $Coker(1-f^{nw})$ contains only one n-periodic point class and this class is reducible to 1. So we have

(1)

$$\overline{NP_1}(f:X-A) = \overline{N}(f:X-A)$$

$$= \begin{cases} 1, & \text{if } N(\overline{f}) = 0 \text{ and } L(f) \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

(2)
$$\overline{NP_n}(f:X-A)=0$$
 for $n>1$.

We denote the set of all *m*-orbits of $f: X \to X$ by $O_{m|n}(f)$ and $\bigcup_{m|n} \overline{T}_m(f: X - A)$ by $\overline{T}_{m|n}(f: X - A)$ for m|n.

DEFINITION 11. A finite subset S of $O_{m|n}(f) - \langle \nu_* \rangle (EO_{m|n}(\overline{f}))$ is called a set of n-representatives on X-A for $f:(X-A) \to (X-A)$ if every essential orbit in $O_{m|n}(f) - \langle \nu_* \rangle (EO_{m|n}(\overline{f}))$ is reducible to at least one element of S for m|n.

LEMMA 12. Let S be a set n- representatives on X-A for $f:(X,A)\to (X,A)$. Then $\overline{T}_{m|n}(f:X-A)\subset S$.

Proof. Let $< [\alpha]^m >$ be an element of $\overline{T}_{m|n}(f:X-A)$. Then $< [\alpha]^m >$ is an irreducible, essential orbit. By definition 11, there exists a $< [\beta]^r > \in S$ such that $[L_{r,m}](< [\beta]^r >) = < [\alpha]^m >$. Since $< [\alpha]^m >$ is irreducible, we have $< [\alpha]^m > = < [\beta]^r >$. So we get $< [\alpha]^m > \in S$.

DEFINITION 13. $\overline{N\phi_n}(f:X-A) = min\{h(S) \mid S \text{ is a set of } n - \text{representatives on } X-A \text{ for } f:(X,A) \to (X,A)\}$ is called the Nielsen type number for the *n*th iterate of $f:(X,A) \to (X,A)$.

Note that this definition implies that $\overline{N\phi_n}(f:X-A)=0$ if the empty set is a set of *n*-representatives for $f:(X,A)\to (X,A)$, and that $N\phi_n(f)=\overline{N\phi_n}(f:X-\phi)$.

THEOREM 14. (Lower bound property) $f:(X,A) \to (X,A)$ has at least $\overline{N\phi_n}(f:X-A)$ periodic points on X-A of period n.

Proof. Two elements x and y of $Fix(f^n|X-A)$ belong to the same orbit if and only if there is a nonnegative integer q such that $y=f^q(x)$. Let p be the smallest integer of q such that $x=f^p(x)$ and $R^p=\{x\in X-A\mid x=f^p(x)\}$. Then R^p determines an orbit $<[\alpha]^p>$ for each p|n and $p\geq d(<[\alpha]^p>)$. Let $S\subset O_{p|n}(f)-<\nu_*>(EO_{p|n}(\overline{f}))$ be a set of n-representatives on X-A for $f:(X,A)\to (X,A)$ such that $h(S)=\overline{N\phi_n}(f:X-A)$. Then we have

$$\#(Fix(f^n|X-A)) = \sum_{<[\alpha]^p>\in S} p \ge \sum_{<[\alpha]^p>\in S} d(<[\alpha]^p>)$$

$$=h(S)=\overline{N\phi_n}(f:X-A).$$

THEOREM 15. For a map $f:(X,A)\to (X,A)$, we have $\overline{N\phi_n}(f:X-A)\geq \sum_{m|n}\overline{NP_m}(f:X-A)$.

Proof. Let S be a set of n-representatives on X-A for a map $f:(X,A)\to (X,A)$ such that $h(S)=\overline{N\phi_n}(f:X-A)$. By Lemma 12, we have $\overline{T}_{m|n}(f:X-A)\subset S$. So we get

$$\sum_{m|n} \overline{NP_m}(f:X-A) = h(\overline{T}_{m|n}(f:X-A)) \le h(S)$$
$$= \overline{N\phi_n}(f:X-A).$$

THEOREM 16. Let $f:(X,A) \to (X,A)$ be a map such that X and each component A_i of A are Jiang spaces. Let c(i) = l be the length of a \overline{f} -cycle $[A_i]$ and m|n with l|m. If $L(f^m) \neq 0$ and $L(\overline{f_k}^m) \neq 0$ for each $K \in [i]$, then $\overline{T}_{m|n}(f:X-A)$ is a set of n -representatives on X-A for f.

Proof. Let S be a set of n-representatives on X-A for $f:(X,A)\to (X,A)$ such that $h(S)=\overline{N\phi_n}(f:X-A)$. Then we have $\overline{T}_{m|n}(f:X-A)\subset S$ from Lemma 12. Each orbit $<[\alpha]>$ in S is essential by the hypothesis. So there exists a $<[\beta]>\in S$ such that $<[\alpha]>$ reduces to $<[\beta]>$, and $<[\alpha]>$ is irreducible (See [4], p.127). Hence we get $<[\alpha]>\in \overline{T}_{m|n}(f:X-A)$ and $S=\overline{T}_{m|n}(f:X-A)$.

THEOREM 17. $\overline{T}_{m|n}(f:X-A)$ is a set of n-representatives on X-A for $f:(X,A)\to (X,A)$ if and only if $\overline{N\phi_n}(f:X-A)=\sum_{m|n}\overline{NP_m}(f:X-A)$.

Proof. Let $\overline{T}_{m|n}(f:X-A)$ be a set of *n*-representatives. By Lemma 12 and Theorem 15, we have

$$h(\overline{T}_{m|n}(f:X-A)) \le \overline{N\phi_n}(f:X-A) \le h(\overline{T}_{m|n}(f:X-A))$$
 and

$$\overline{N\phi_n}(f:X-A) = h(\overline{T}_{m|n}(f:X-A)) = \sum_{m|n} \overline{NP_m}(f:X-A).$$

Conversely, assume that $\overline{T}_{m|n}(f:X-A)$ is not a set of n-representatives. Then we can choose a set S of n-representatives such that $h(S) = \overline{N\phi_n}(f:X-A)$ and $\overline{T}_{m|n}(f:X-A) \subsetneq S$ by Lemma 12. So we have $\overline{N\phi_n}(f:X-A) \ngeq \overline{NP_m}(f:X-A)$.

This contradicts and the result follows.

EXAMPLE 18. Let X be the solid torus $X = S^1 \times D^2$ and let $g: S^1 \times \{0\} \to S^1 \times \{0\}$ be a map with deg(g) = 2. Then we have $Fix(g^2) = \{e^{\frac{2k}{3}\pi i} \times \{0\} \mid k = 0, 1, 2\}$ and $Coker(1-g^{2w}) = \{[k]^2 \mid k = 0, 1, 2\}$. Let S_k^1 be the boundary circle of the disk $\{e^{\frac{2k}{3}\pi i}\} \times D^2$ for k = 0, 1, 2 and $A = \bigcup_{k=0}^2 S_k^1$ be a non-path connected subspace of X. Let $\overline{f}: A \to A$ be a map from each circle to a circle and $\overline{f_k}$ be the restriction of \overline{f} to S_k^1 with $deg(\overline{f_k}) = d_k$. From g and \overline{f} , we can extend to a map $f: (X, A) \to (X, A)$. Now we put $[A_0] = \{S_0^1\}$ and $[A_1] = \{S_1^1, S_2^1\}$. Let $\overline{f_0}: S_0^1 \to S_0^1$ be the identity and $\overline{f_1}: S_1^1 \to S_2^1$ be a map with $d_1 = 1$, and $\overline{f_2}: S_2^1 \to S_1^1$ be a map with $d_2 = 3$.

Then we will obtain the following:

- i) $Coker(1-f^w) = \{[0]^1\} \cong Z_1 \text{ and } O_1(f) = \{<[0]^1 > \}, \text{ where } <[0]^1 > \text{ is essential and not common.}$
- ii) $Coker(1 f^{2w}) = \{[0]^2, [1]^2, [2]^2\} \cong Z_3 \text{ and } O_2(f) = \{<[0]^2>, <[1]^2>\}, \text{ where } <[0]^2> \text{ is reducible, essential and not common, and } <[1]^2> \text{ is irreducible, essential common.}$
- iii) $Coker(1-f^{3w}) = \{[0]^3, [1]^3, [2]^3, [3]^3, [4]^3, [5]^3, [6]^3\} \cong \mathbb{Z}_7$ and $O_3(f) = \{<[0]^3>, <[1]^3>, <[3]^3>\}$, where $<[0]^3>= \{[0]^3\}$ is reducible, essential and not common, and $<[1]^3>= \{[1]^3, [2]^3, [4]^3\}$ and $<[3]^3>= \{[3]^3, [6]^3, [5]^3\}$ are irreducible, essential and not common.
- iv) $Coker(1-f^{6w})=\{[j]^6\mid j=0,1,2,\cdots,62\}\cong Z_{63}$ and $O_6(f)=\{<[j]^6>\mid j=0,1,3,5,7,9,11,13,15,21,23,27,31\},$ where $<[0]^6>=\{[0]^6\},<[21]^6>=\{[21]^6,[42]^6\},<[9]^6>=\{[9]^6,[18]^6,[36]^6\},<[27]^6>=\{[27]^6,[54]^6,[45]^6\},<[1]^6>=\{[k]^6\mid k=1,2,4,8,16,32\},<[3]^6>=\{[k]^6\mid k=3,6,12,24,48,33\},<[5]^6>=\{[k]^6\mid k=5,10,20,40,17,34\},<[7]^6>=\{[k]^6\mid k=7,14,28,56,49,35\},<[11]^6>=\{[k]^6\mid k=13,26,52,41,19,38\},<[15]^6>=\{[k]^6\mid k=13,26,52,41,19,38\},<[15]^6>=\{[k]^6\mid k=13,26,52,41,19,38\},$

 $15, 30, 60, 57, 51, 39\}, < [23]^6 >= \{[k]^6 \mid k = 23, 46, 29, 58, 53, 43\}, < [31]^6 >= \{[k]^6 \mid k = 31, 62, 61, 59, 55, 47\}.$

we obtain $[L_{m.6}]$ for m|6 by

 $[L_{1,6}] = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 = 63,$

 $[L_{2,6}] = 1 + 2^2 + 2^4 = 21,$

 $[L_{3,6}] = 1 + 2^3 = 9$ and $[L_{6,6}] = 1$,

and the depth of orbits by

 $d(<[0]^6>) = 1, d(<[9]^6>) = d(<[27]^6>) = 3, d(<[21]^6>) = 2, d(<[k]^6>) = 6 for <math>k = 1, 3, 5, 7, 11, 13, 15, 23, 31.$

Also, since $[L_{2,6}](<[1]^2>) = <[21 \times 1]^6> = <[21]^6>$, we can see that $<[21]^6>$ is common.

So $< [0]^6 >$ is reducible, essential and not common, $< [9]^6 >$ and $< [27]^6 >$ are reducible, essential and not common. $< [21]^6 >$ is reducible, essential and common, $< [k]^6 > (k = 1, 3, 5, 7, 11, 13, 15, 23, 31)$ are irreducible, essential and not common.

From i) \sim iv), we get $\overline{NP_m}(f:X-A)$ and $\overline{N\phi_m}(f:X-A)$ for m|6 as the following:

 $\frac{(1)}{NP_1}(X-A)=1$. and $NP_1(f,\overline{f})=0$, we have

Since $S = \{ < [0]^1 > \}$ is a set of 1-representatives, we have $\overline{N\phi_1}(f:X-A) = h(S) = 1$.

(2) Since $NP_2(f) = |1-2^2| - |1-2| = 2$ and $NP_2(f,\overline{f}) = 2$, we have $\overline{NP_2}(f:X-A) = NP_2(f) - NP_2(f,\overline{f}) = 0$.

Since $S = \{ < [0]^1 > \}$ is a set of 2-representatives, we have $\overline{N\phi_2}(f:X-A) = h(S) = 1$.

(3) Since $NP_3(f) = |1-2^3| - |1-2| = 6$ and $NP_3(f,\overline{f}) = 0$, we have $\overline{NP_3}(X-A) = NP_3(f) - NP_3(f,\overline{f}) = 6$.

Also since $S = \{ < [0]^1 >, < [1]^3 >, < [3]^3 > \}$ is a set of 3-representatives, we have $N\phi_3(f:X-A) = h(S) = 1 + 2 \times 3 = 7$.

(4) $NP_6(f) = |1 - 2^6| - |1 - 2^3| - |1 - 2^2| + |1 - 2| = 54$ and $NP_6(f, \overline{f}) = 0$ follow from iv). So we get $NP_6(f : X - A) = 54$.

Also we obtain a set of 6-representatives

 $S = \{ < [0]^1 >, < [1]^3 >, < [3]^3 >, < [1]^6 >, < [3]^6 >, < [5]^6 >, < [7]^6 >, < [11]^6 >, < [13]^6 >, < [15]^6 >, < [23]^6 >, < [31]^6 > \}$ from iv). So we have $\overline{N\phi_6}(f:X-A) = 1 + 2 \times 3 + 9 \times 6 = 61$ and can see $\overline{N\phi_6}(f:X-A) = \overline{NP_1}(f:X-A) + \overline{NP_2}(f:X-A) + \overline{NP_3}(f:X-A) + \overline{NP_6}(f:X-A) = 1 + 0 + 6 + 54 = 61.$

References

- P.R.Heath, Product formulae for Nielsen numbers of fibre maps, Pacific J. of Math., 117 (1985), 267-289.
- [2] P.R.Heath, R.Piccinini and C.You, Nielsen-type numbers for periodic points I, in :Topological Fixed Point Theory and Applications, Proceedings, Tianjin 1988, Lecture Notes in Mathematics 1411, Springer, Berlin (1989), 88-106.
- [3] P.R.Heath, H. Schirmer and C. You, Nielsen type numbers for periodic points on nonconnected spaces, Topology and its Appl.,63 (1995), 97-116.
- [4] _____, Nielsen type numbers for periodic points on pairs of spaces, Topology and its Appl.,63 (1995). 117-138.
- [5] P.R.Heath and C. You, Nielsen-type numbers for periodic points II, Topology and its Appl., 43 (1992), 219-236.
- [6] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Math., Vol. 14, Amer. Math. Society, Providence, RL, 1983.
- [7] I. T. Lim, A relative Nielsen number and an extension Nielsen number, Basic Science and Engineering, Vol. 1 (1997), 19-22.
- [8] H.Schirmer, A Relative Nielsen number, Pacific J. of Math., 122 (1986), 459-473.