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Abstract In this paper we prove a funetional central limit theorem for a
field {Xj 1] € Zd } of nonstationary associated random variables with EX- =
0, El)(,!r“’"‘5 < oo for some 7 > 2,8 > 0 and u(nt = O(n~") for some v > 0.
where u(n) := SUPLEZililJ_-'"iIz" Y cov( Xy, X;) bel = max(jril.- - agl) for
z € RY. Our investigation implies an analogous result in the case of associated

random measure.

1. Introduction

Let {X; : ) € Z%} be a random field on some probability
c‘.pace (Q,F,P) with EX; = 0, EX} < oc. Forn € Z, put

1 = Zléjsni j- assume n’ (‘E(S'nl) —, € (0,00), and
deﬁne

ntl [nty]
I/Vn@ = (f’Ld/Q) 12 Z X?? (])
Ji1=1 Ja=1

where Wy, (t) = 0 for some t; = 0. Then W, is a measurable map
from (£2, F) into, (Dg, B(D,), where Dy is the set of all functions
on [0, 1]% which have left limits and are continuous from the right.
and B(Dy) is the Borel o-field induced by the Skorohod topology.
{X;:5¢€ Zf} fulfills the functional central limit theorem if W,
converges weakly to the d-parameter Wiener process W on D,

Received March 28. 2002.

1991 AMS Subject Classification : 60F17. 60G10.

Kev words and phrases : associated. random Held, functional central linit
theorem. random measure.



122 Tae-Sung Kim, Mi-Hwa Ko

Our aim is to investigate the functional central limit theorem for
random fields satistying a condition of strong positive dependence
called association.

A finite family {X; : 1 < j < n} of random variables is said to
be associated if for any two coordinatewise nondecreasing func-
tions f and g on K" such that f and g have finite variance. there
holds Cov(f(X 1, -+, Xn),9(X1.--- . X)) 2 0. An infinite family
is associated if every finite subfamily is asseciated. This definition
was introduced by Esary, Proschan and Walkup(1967).

Under some covariance restrictions a number of limit theorems
have been proved for associated sequences. In the stationary case,
Newman(1980) proved the central limit theorem and Newman and
Wright (1981) extended this to a functional central limit theorem.
Burton and Waymire(1985) extended the notion of association to
the random measure and proved the central limit theorem. Burton
and Kim(1988) obtained the functional central limit theorem for
a stationary random field of associated random variables. In the
nonstationary case Birkel(1988 ) derived a functional central limit,
theorem for one dimensional associated processes.

In this paper we derive a functional central limit theorem for a
random field of nonstationary associated random variables by ap-
plying Bulinskii(1993) moment inequality and finite d-susceptibility
criterion which is a result of Bickel and Wichura(1971) allowing
them to conclude tightness.

2. Preliminaries

A random field is associated if whenever A C Z% is a finite
subset and f,g: R* — R are coordinatewise nondecreasing then
Cov[f(X; : j € A), g(X; : j € A)] is nonnegative where the
covariance is defined (see [5] and [6]).

Bulinskii(1993) obtained the following lemma using the covari-
ance coefficient (see Cox and Grimmett(1984))

u(n) = sup Z cov(X;. X;), where n € Z, U {0}.

€24 jij—il>n
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LEMMA 2.1. Let {X,:j € Zi} be a field of associated random
variables with zero mean. Assume

sup E|,\Ji’+" < o for somer > 2.8 > (0, (2)
lezd
w(n) = O(n™") for some v > 0, (3)
Then _
supE| Z X;|" = 0(nl)? for some r > 2, (4)
1<j<n
where |||l = ny X ng x < x ng for n = {0y, ,ng).

LEMMA 2.2. Let{X;:j € Z } be a random field of associated
random variables with EX_ = 0. EXJ2 0o and define W,,(-) as

in (1). Assume

E{(Wn(t) - ‘Vn(ﬁ))(wrrt(ﬁ) - M’fn(yﬁ))} —n 0
forQ<s<t<u<uv<l

Proof. Tt follows from (6) that (7) holds. Next we have
E{W,(s)Wn(t)}
= E{ n “7) V()Y (Wh(t) - Wals) + Wo(s) ~ WoL(0))}
= E{(Wn(s) - Wo(0))(Wn(t) — Wy(s))}
+ E{(W,(s) - W,(0) )“} = ||8]]

according to (5) and (7). Hence (7) implies (6).

For block B = (s.t] = I%_,(s;. t:).8 = (81, - .8q) t = (tq.--- .
tq) let
W, (B) = (on? X (8)
JEND

where nB = (ng. nt] = I (ns,. nt;] for B = (s.1].



124 Tae-3ung Kim, Mi-Hwa Ko

LEmMMA 2.3. Let {X;:j € Z%} be a field of associated random
variables with EX; = 0 and define W, ( (+) as in (1). If (2) and (3)
hold, then

supE|W, (O)2+5 < ClJtI*+3 for d > 0. (9)

supE|W,(B)|**0 < C|| B ¥, (10)

where ||B|| denotes the Lebesgue measure of B and B = (s.1]
for0<s<t<]l.

Proof. 1t follows from (1) and Lemma 2.1 that

supE|Wan(t)|2t® = sup(on?) GO E z X]IQM
0«:1< (nt)

< O+,
Similarly, from (8) and Lemma 2.1 we have

sup E|W,,(B)|**? = sup(on?) "G+ E| Z X 2+
(nel<j<[nt]

< Ot - 5|+
= C|B||'*

3. A functional central limit theumm

THEOREM 3.1. Let {X; : j € Z%} be a field of associated
random variables with EX; = 0, E sz < o¢ and define W, (-) as

in (1). If (2), (3) and (6) “hold tbcu {X J € Z4} fulfills the
functional central limit theorem.

Proof. First note that we obtain (9) and (10) by Lemma 2.3.
By Lemma 2 of Deo (1975) it is sufficient to show that W, ()
converges weakly in the Skorohod topology to a stochastic process
W which has the following properties :

(a) E{W ()} = 0. E{W ()2} = [|tl.0 < ¢ < L.
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(b) W has continuous paths.

(¢) Increments of W around any collection of strongly seperated
blocks in [0.1]? are independent random variables.

Note that for a black B = (. .] clo.1)

W, (B) = (ant Y,

/tf-u

where nB = Hle(nsi, nt;] for B = (s.¢].
From Chebyshev's hiequality. Schwaz inequality and (10) it fol
lows that, for neighboring bocks 2 and F.

Plmin(|Wp(B), |W,.(F)]) > A

S AT B min(JW,,(B)], W, (F)])}*]

S ATCEEE{WL(B) P2} E{ W, (F) P+ )2
CATEED(C B YR HE)2 (11)
< MO B FIY)

< ATCHIC(|BY] + |F )]

= A"EHOCB U |t

Thus by Theorem 3 of Bickel and Wichura(1971) the following
tightness condition (12) is in force

lé%l supP{w(W, . 0) > ¢} = 0as ] 0. (12)
where w(W,,,8) = sup, _y 5 IWn(s) =W, (1) and [s—t| = mar(]s

—til.- -+ .|sq — tq]) and thus the quuenm {H”} is tight.
It should be noted that Bickel and Wichura (1971) assumned
that W, (-) vanished along the lower boundary of [0. 1]%:

D 01]x ox (0.1 {0} x [0 1] % -+ x [0, 1]

1<p<d

where {0} is in pth position. But by (10) l’(zﬂ p-X;=0)=1if

|1 Bl = 0. s0 a version of W,, exists which is zero Al()ng, the lower
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boundary. Let X be a limit in distribution of a subsequence of
{W, :n € Z,.}. Then it follows from (12) and Theorem 15.5
of Billingsley(1968) that X is continuous with probability one. It
suffices to show that X is distributed like W. From the assumption
it is easily seen that

EWn(t) =+, 0. EW2(t) —n it (13)

By (9) for n large enough,
EQW ()7+? <= textCOtl|*+9/2. (14)
Alfso {W:i(t).n € Z4} and {Wn t) : n € Z,} are uniformly

Wrn (é) —*n (ﬁ) Wr'f(.t.) “r¥n Xz(i)

in distribution (for a subsequence), Theorem 5.4 of Billingsley
(1968) and (13) imply EX(¢) = 0, EX%(¢) = |t||. According to
Theorem 19.1 of Billingsley (1968), X is distributed like W if X
has independent increments, that is for the strongly separated
b]OCkS, Bl, Bg, Tt Bk,

X(B1),X(By), -, X(Bx) are independent for all k € Z, (15)
where Bk = (tk—-la.t.k]sg < Q(j S e ‘,:’_: ﬁk f_: 1.

It remains to show (15). Since (W, (B1), -+, Wn(Bk)) —n
(X(B1), -+, X(Bx)) in distribution and since W, (B;)'s are as-
sociated by (Py) of Esary, Proschan and Walkup( 1967) X (¢,) —
X(tg), -+, X(tx) — X(tx_,) are associated, according to (Ps) of
Esary et al. (1967). A similar argument as above (using Theo-
rem 5.4 of Billingsley (1968) and the fact that associated random
variables are nonnegatively correlated) yields, for ¢ # j, B; = (s, ]

and B; = (u, 2],
Cov(X(B:), X(B;))
= lim Cov(W,(B:), Wa(B;))
= lim Cov(Wn((s.1]). Wal(y, 1))
< Tim Cov(Wy(t) ~ Wa(s). Wa(x) = Wa())

= () D<s<t<u<p<i.
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according to (7) of Lemma 2.2. Hence the X(B;)'s are associ-
ated and uncorrelated random variables and thus independent by
Corollary 3 of Newman (1984). This proves that X(By). ---
X (By) are independent and therefore the proof of Theorem 3.1 is
complete.

4. Random measures

In this section we will apply the notions of associated random
fields to the random measures, that is. a simple argument using
Chebyshev’s inequality allows us to extend the functional central
limit theorem for associated random fields to random measure. B¢
denotes the collection of Borel subsets of d-dimensional FEuclidean
space R®. The space M of all nonnegative measure p defined
on (R4, B%) and finite on bounded sets will be equipped with the
smallest o-field containing basic sets of the form {u € M : pu(A) <
r}for A€ B4 0<r < oo

A random measure X is a measurable map from a probability
space (Q, F, P) into (M, M), the induced measure Px = Po X!
on (M, M) is the distribution of X and if X is a random measure
and B? is a Borel subset of R%, then X (B) represent the random
mass of the region B (see [6]).

For the random measure X, define the K-renonmalization of
X to be signed random mesure X g, where

X(KB) - EX(KB)

and let Xg(t) = Xg(t), - .tq) be defined by
Xk(t) = Xk([0,t1] x -+ x (0.t4]) (17)

for t € [0,00)%. Let {Xg} be sequence of random measure on
R%. A set function Xy satisfies the central limit theorem if any
bounded B € B, Xk (B) converges in distribution to N(0.||B|])
and K — oo where Xk (B) is defined in (16) and ||B|| denotes
the Lebesque measure of B and the random measure X satisfies
the functional central limit theorem if X converges weakly to
the d-dimensional Wiener measure W. '
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DEFINITION 4.1(BURTON, WAYMINE 1985). A random mea-
sure X is associated if and only if the family of random variables
F ={X(B): B is a Borel set } is agsociated.

By applying Lemumna 2.1 we obtain the following result :

LEMMA 4.2. Let X be an associated random measure with
EX(B), EX*(B) < > and define Xg(B) and Xg(t) as in (16)
and (17). Assume that )

sup EIX(Ij)|"'+5 < oc for somer > 2,0 > 0, (18)
i€zg - ,
v(n) = O(n™") for some v > 0, (19)

where v(n) = SUP;e 74 ):l'iii"ilzn Cofu(X(ﬁ)»X(Il))a I = (j -
lLjlfor1<je€ Zi and n € Z, U{0}. Then

sup E| Xk (B)|" = O(||B||)? forsomer > 2 (20)

and ‘
sup E| Xk ()] = O(Jjt))# for some r > 2. (21)

THEOREM 4.3. Let X be an associated random measure with
EX(B) and EX?(B) < x and define Xg(t) as in (17). Assume
that (18), (19) and

E{Xk(s)Xk(t)} —k |8 for0 < s <t <1 (22)

hold. Then X satisfies the functional central limit theorem.

Proof. Note that for a block B c [0,1]%,

 X(KB) - EX(KB)
B aKd/2

Xk(B) (23)

where if B = T4, (s;.t;] then KB = ¢ (Ks;. Kt;]. As in (11)
it follows from (20) that for neighboring blocks B and F.

Pimin(| Xk (B)].| Xk (F)]) 2 A € A" C+9c[BU |+
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and thus by Theorem 3 of Biekel and Wichura(1971) the sequence
{ Xk} is tight. Asin the proof of Theorem 3.1. by (20) P(X(A) =
0) = 1if ||A|] = 0. so a version of Xg exists. which 1s 0 along the
lower boundary.

Suppose X is the linit in distribution of a subsequence, Then
X is continuous with probability one by the similar arguinents
the proof of Theorem 3.1. It suffices to show that X is distributed
as W. From (23) and condition (22). it is easily seen that

EXg(t)=0.  EXg(t) —x it (24)
By (20), for K large enough,

; 1 o2 g o

E(Xk@)**) < WW}C'(G“KWH’)H? (25)

and so {Xg(t)} and {X% ()} are uniformly integrable for every
te0,1]% As

Xk (t) —x X(1), XZ(t) —r X*1)

in distribution, Theorem 5.4 of Billingslev (196&) and (24) imply
that ‘ :
EX(t) =0, EX?(t) = |Itll.

Finally, let By, -, B, C [0, 1]¢ be strongly separated blocks, and
let B; = (s,t], Bj = (u.v]. where 0 <5 <t <u <wp<1 Since
random variables X (/;) are nonnegative correlated, it follows from
(22) that -

Cov(Xk(Bi), Xk (Bj)) < Cov(Xk(t) — Xk (s),

. 26
Xr(w) ~ Xg(u) —k 0 (26)
according Lemma 2.2, where I; = (j — 1,j] for 1 < j € Z¢.

Since X g (Bj)'s are associated by Corollary 3 of Newman(1984)
and (26) the Xg(B;)'s are independent as K — B. Hence.
X must have independent increments. Thus every subsequence
{X g} of { Xk} has further subsequence of { X .« } which converge
weakly to the Wiener measure 1 on [0.1]9.

It follows that X g converges weakly to the d-dimensional Wie
ner measure W.
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