서울대학교병원형 방사선수술 표준기법의 중심점 선량의 오차

Radiation Dose Accuracy 81 the Isocenter : Standard Stereotactic Radiosurgery Technique Developed at Seoul National University Hospital

  • 신성수 (서울대학교 의과대학 치료방사선과학교실, 의학연구원 방사선의학연구소) ;
  • 김일한 (서울대학교 의과대학 치료방사선과학교실, 의학연구원 방사선의학연구소) ;
  • 하성환 (서울대학교 의과대학 치료방사선과학교실, 의학연구원 방사선의학연구소) ;
  • 박찬일 (서울대학교 의과대학 치료방사선과학교실, 의학연구원 방사선의학연구소) ;
  • 강위생 (서울대학교 의과대학 치료방사선과학교실, 의학연구원 방사선의학연구소) ;
  • 허순녕 (서울대학교 의과대학 치료방사선과학교실, 의학연구원 방사선의학연구소)
  • Shin Seong Soo (Department of Therapeutic Radiology, Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine) ;
  • Kim Il Han (Department of Therapeutic Radiology, Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine) ;
  • Ha Sung Whan (Department of Therapeutic Radiology, Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine) ;
  • Park Charn Il (Department of Therapeutic Radiology, Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine) ;
  • Kang Wee-Saing (Department of Therapeutic Radiology, Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine) ;
  • Hur Sun Nyung (Department of Therapeutic Radiology, Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine)
  • 발행 : 2002.12.01

초록

목적 : 서울대학교병원에서 개발한 정위방사선수술 시스템에서의 표준적 정위방사선수술기법을 적용시 중심점에서의 방사선량 오차를 확인하고자 하였다. 재료 및 방법 : 내경 10 mm 20 mm인 원통형의 3차 콜리메이터를 장착후 5개의 호형(arc)으로 구성된 표준형 정위방사선수술계획에 따라 시행한 정위방사선수술시의 선량을 측정하였다. 방사선은 CL2100C 선형가속기에서 발생하는 6 MV X-선을 사용하였고 자체 개발한 다용도 팬톰에서 0.125 cc 전리함 및 다이오드 검출기로 중심점 선량을 측정하였다. 결과 : 내경 20 mm인 3차 콜리메이터를 장착한 정위방사선수술 시행시 호형에 따른 계획선량과 측정선량 간 오차는 0.125 cc 전리함 측정시 $-0.73\%$ 내지 $-2.69\%$, 다이오드 검출기 측정시 $-1.29\%$ 내지 $-2.91\%$이었다. 내경 10 mm 인 3차 콜리메이터 장착한 경우의 오차는 다이오드 검출기로 측정하였을 때 $-2.39\%$ 내지 $-4.25\%$이었다. 결론 : 중심점 선량 오차는 약 $3\%$ 정도로서 DICOM 3.0 표준형식을 통한 영상자료 처리 등의 개선책을 통한 최소화 노력이 필요하다.

Purpose : To confirm the accuracy of the radiation dose at the isocenter by the standard linear accelerator-based stereotactic radiosurgery technique which was developed at Seoul National University Hospital. Materials and Methods : Radiation dosimetry was undertaken during standard 5-arc radiosurgery using 6 MV X-ray beam from CL2100C linac. The treatment head was attached with circular tertiary collimators of 10 and 20 mm diameter. We measured the absorbed dose at the isocenter of a multi-purpose phantom using two kinds of detector : a 0.125 co ionization chamber and a silicon diode detector. Results : The dose differences at each arc plane between the planned dose and the measured dose at the isocenter raged from $-0.73\%\;to\;-2.69\%$ with the 0.125 cc ion chamber, and from $-1.29\%\;to\;-2.91\%$ with the diode detector during radiosurgery with the tertiary collimator of 20 mm diameter. Those with the 10-mm tertiary collimator ranged from $-2.39\%\;to\;-4.25\%$ with the diode. Conclusion : The dose accuracy at the isocenter was ${\pm}3\%$. Therefore, further efforts such ws modification in processing of the archived image through DICOM3.0 format are required to lessen the dose difference.

키워드

참고문헌

  1. LekseII L. The stereotaxis method and radiosurgery of the brain. Acta Chir Scand 1951;102:316-319
  2. LekseII L. Cerebral radiosurgery. Gamma thaIamotomy in two cases of intractable pain. Acta Chir Scand 1958;134:585-595
  3. FIickinger JC, KondzioIka D, Lunsford LD. Radiosurgery of benigh lesions. Semin Radiat Oncol 1995;5:220-224 https://doi.org/10.1016/S1053-4296(05)80020-7
  4. Betti OO, Derechinsky VE. Hyperselective encephalic irradiation with linear accelerator. Acta Neurochir 1984;33(suppl):385-390
  5. Friedman WA, Bova FJ. The University of Florida Radiosurgery System. System. Surg Neurol 1989;32:334-342
  6. Park CI, Ha SW, Kim IH, et aI. Development of the Seoul National University Hospital-type stereotactic radiosurgery system using Iinear accelerator. Final Report of 1991 SNUH Large Scale Grant, 1995
  7. Suh TS, Suh DY, Park SH, et aI. Development of a 3-dimensional coordinate system and dosimetry system for radiosurgery. J Korean Assoc Radiat Protect 1995;20:25-36
  8. Kim IH, Kang WS, Ha SW, Ha SW, Park CI, Cho YG. Extracranial doses with LINAC radiosurgery. J Korean Soc Ther Radiol Oncol 1996;14:159-165
  9. Podgorsak EB. Physics of radiosurgery with Iinear accelerator. Neurosurg CIin N Am 1992;3:9-34
  10. Siddon RL, Barth NH. Stereotaxic localization of intracranial targets. Int J Radist Oncol Biol Phys 1987;13:1241-1245 https://doi.org/10.1016/0360-3016(87)90201-X
  11. PhiIIips MH, FrankeI KA, Lyman JT, et aI. Heavy charged-particle stereotactic radiosurgery : cerebral angiography and CT in the treatment of intracranial vascular malformation. Int J Radiat Oncol Biol Phys 1989;17:419-426 https://doi.org/10.1016/0360-3016(89)90460-4
  12. NucIear Associates. Therapy silicon diode detectors for high energy electrons and photons, Manual
  13. Khan FM. The physics of radiation therapy. 2nd ed., BaItimore, WiIIiam & Wilkins, 1994
  14. Hartmann GH, Bauer-Kirpes B, Serago CF, et aI. Precision and accuracy of stereotactic convergent beam irradiation from a linear accelerator. Int J Radiat Oncol Biol Phys 1994;28:481-492 https://doi.org/10.1016/0360-3016(94)90075-2
  15. Low DA, Li Z, DrzymaIa RE, et aI. Minimization of target positioning error in accelerator-based radiosurgery. Med Phys 1995;22:443-448 https://doi.org/10.1118/1.597475
  16. Larson DA, Bova F, Eisert D, et aI. Consensus statement on stereotactic radiosurgery quality improvement. Int J Radiat Oncol Biol Phys 1994;28:527-530 https://doi.org/10.1016/0360-3016(94)90081-7
  17. Park CI. Final report on the development of radiosurgery system(Nuclear Development Research Fund, Most). Korea; Ministry of Science and Technology 1998