The Role of Fas in Radiation Induced Apoptosis in vivo

방사선에 의한 Apoptosis에서 Fas의 역할

  • Kim, Sung-Hee (Department of Radiation Oncology, Yonsei University Medical College) ;
  • Seong, Jin-Sil (Department of Radiation Oncology, Yonsei University Medical College) ;
  • Seong, Je-Kyung (Department of Laboratory Animal Science, Yonsei Medical Research Center, Yonsei University Medical College, Barin Korea 21 Project for Medical science)
  • 김성희 (연세대학교 의과대학 방사선종양과학교실) ;
  • 성진실 (연세대학교 의과대학 방사선종양과학교실) ;
  • 성제경 (연세대학교 임상의학연구센터 실험동물부, 두뇌 한국 21 의과학 사업단)
  • Published : 2002.09.01

Abstract

Purpose : It has been recognized that interaction of the Fas : Fas ligand plays an important role in radiation-induced apoptosis. The purpose of this study was to investigate the role of Fas mutation in radiation-induced apoptosis in vivo. Materials and Method : Mice with mutations in Fas, $MRL/Mpj-Fas^{Ipr}$, and its normal control, MRL/Mpj, were used in this study. Eight-week old male mice were given whole body radiation. After irradiation, the mice were killed and their spleens were collected at different time intervals. Tissue samples were stained with hematoxylin-eosin and the numbers of apoptotic cells were scored. Regulating molecules of apoptosis including p53, Bcl-2, Bax, $Bcl-X_L,\;and\;Bcl-X_S$ were also analyzed by Western blotting. Results : At 25 Gy irradiation, the level of apoptosis reached the peak value at 8 hr after radiation and recovered to the normal value at 24 hr after radiation in MRL/Mpj mice. In contrast, the peak apoptosis level appeared at 4 hr after radiation in $MRL/Mpj-Fas^{Ipr}$. At 8 hr after radiation, the levels of apoptosis in MRL/Mpj mice and $MRL/Mpj-Fas^{Ipr}$ mice were $52.3{\pm}7.8\%\;and\;8.0{\pm}8.6\%$, respectively (p<0.05). The expression of apoptosis regulating molecules, p53, $Bcl-X_L\;and\;Bcl-X_S$, increased in MRL/Mpj mice in response to radiation; p53 with a peak level of 3-fold at 8 h, $Bcl-X_L$ with a peak level of 3.3-fold at 12 h, and $Bcl-X_S$ with a peak level of 3-fold at 12 h after 25 Gy radiation. Bcl-2 and Bax did not show significant change in MRL/Mpj mice. However in $MRL/Mpj-Fas^{Ipr}$ mice, the expression levels of p53, Bcl-2, Bax, $BCl-X_L\;and\;BCl-X_S$ showed no significant change. Conclusion : The level of radiation-induced apoptosis was lower in Fas mutated mice, Ipr, than in control mice. This seemed to be related to the lack of radiation-induced p53 activation in the Ipr mice. This result suggests that Fas plays an important role in radiation-induced apoptosis in vivo.

목적 : 전리 방사선에 의해 유도되는 세포의 apoptosis에서 Fas:Fas ligand 상호 작용의 역할이 보고되고 있다. 본 연구는 Fas 변이를 보이는 Ipr 마우스를 이용하여 in vivo에서 Fas의 발현이 전리 방사선에 의해 유도되는 apoptosis에서 어떤 역할을 하는지 조사하고자 하였다. 대상 및 방법 : Fas의 변이를 보이는 $MRL/Mpj-Fas^{Ipr}$ 마우스와 이의 대조군으로서 MRL/Mpj 마우스를 대상으로 하였다. 마우스는 8주령 웅성으로서 이들에게 전신 방사선을 조사하고 일정 시간 후 비장을 적출하였다. 조직을 hematoxylin-eosin 염색하여 apoptosis 유도 수준을 비교 분석하였다. 또한 apoptosis의 조절 물질인 p53, Bcl-2, Bax, $Bcl-X_L,\;Bcl-X_S$에 대하여 Western blotting을 시행하고 발현수준을 densitometry로 분석하여 관련된 기전을 연구하였다. 결과 : 25 Gy 방사선 조사 후 MRL/Mpj 마우스는 8시간째에 apoptosis가 최대로 많이 일어났고 24시간째에 거의 정상 수준에 가깝게 회복이 되었다. 반면 $MRL/Mpj-Fas^{Ipr}$ 마우스에서는 4시간째에 apoptosis가 최대로 많이 일어났고 8시간째부터 회복되기 시작하였다. MRL/Mpj 마우스의 경우 apoptosis의 최대 유도 수준은 25 Gy 조사 후 8시간째에 $52.3{\pm}7.8%$이었으나, $MRL/Mpj-Fas^{Ipr}$ 마우스는 같은 시간대에 $8.0{\pm}8.6\%$로서 $MRL/Mpj-Fas^{Ipr}$ 마우스에서 apoptosis의 유도 수준이 유의하게 대조군 보다 낮은 것으로 나타났다(p<0.05). 유전물질의 발현에서 25 Gy 방사선 조사후 MRL/Mpj 마우스에서는 p53은 1시간부터 증가를 보여 8시간째에 최대치인 3배를 보였으며, $Bcl-A_L$$Bcl-X_S$은 1시간부터 증가를 보여 12시간째에 각각 최대치인 3.3배, 3배를 보였다. 그러나 Bcl-2와 Bax는 뚜렷한 증감을 보이지 않았다. MRL/Mpj 마우스에서 p53, $Bcl-X_L$$Bcl-X_S$ 등의 발현이 방사선에 의하여 유의하게 증가한 데 반하여 $MRL/Mpj-Fas^{Ipr}$ 마우스에서는 p53, Bcl-2, $Bcl-X_L,\;Bcl-X_S$ 및 Bax 등 분석한 유전자 산물 어느 것도 뚜렷한 증감을 보이지 않았다. 결론 : Fas의 변이가 있는 Ipr 마우스에서 방사선에 의한 apoptosis가 대조군보다 현저하게 낮게 나타났고 이는 방사선에 의한 p53의 유도가 미약한 것과 연관된 것으로 나타났다. 방사선에 의한 apoptosis 유도에 Fas의 역할이 매우 중요한 것으로 보인다.

Keywords

References

  1. Itoh N, Yonehara S, Ishii A, et aI. The polypeptide encoded by the c-DNA for a human ceII surface antigen Fas can mediate apoptosis. CeII 1991;66:233-243
  2. Leithause F, Dhein J, Mechtersheimer G, et aI. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor superfamily, in normal and neoplastic cells. Lab Invest 1993;69:415-429
  3. Nguyen PL, Harris NL, Ritz J, et aI, Expression of CD95 antigen and Bcl-2 protein in non Hodgkin's Iymphoma and Hodgkin's disease. Am J Pathol 1996;148:847-853
  4. Owen-Schaub LB, Radinsky R, KruzeI E, et aI. Anti-Fas on nonhematopoietic tumors : levels of Fas/APO-1 and bcI-2 are not predictive of biological responsiveness. Cancer Res 1994;54:1580-1586
  5. Dirks W, Shone S, Uphoff C, et aI. Expression and function of CD95 (FAS/APO-1) in leukemia-Iymphoma tumour Iines. Br J Hematol 1997;96:584-593 https://doi.org/10.1046/j.1365-2141.1997.d01-2048.x
  6. Ashkenazi A, Dixit VM, Death resptors: signaling and modulation. Science 1998;281:1305-1308 https://doi.org/10.1126/science.281.5381.1305
  7. Nagata S. Apoptosis by death factor. Cell 1997;88:355-365 https://doi.org/10.1016/S0092-8674(00)81874-7
  8. Dewey WC, Ling CC, Meyn RE. Radiation-induced apoptosis : relevance to radiotherapy. Int J Radiat Biol 1995;33:781-796 https://doi.org/10.1016/0360-3016(95)00214-8
  9. Yanafihara K, Nii M, Numoto M, et aI. Radiation-induced apoptotic ell death in human gastric epithelial tumor cells : correlation between mitotic death and apoptosis. Int J Radiat Biol 1995;67:677-685 https://doi.org/10.1080/09553009514550801
  10. OIive PL, Banath JP, Durand RE. Development of apoptosis and polyploidy in human Iymphoblst cells as a function of position in the cell cycle at the time of irradiation. Radiat Res 1996;146:595-602 https://doi.org/10.2307/3579374
  11. BeIka C, Rudner J, WesseIbourg S, et aI. Differential role of caspase-8 and BID activation during radiation and CD95-induced apoptosis. Oncogene 2000;19:1181-1190 https://doi.org/10.1038/sj.onc.1203401
  12. Reap EA, Roof K, Maynor K, et aI. Radiation and stress induced apoptosis; a role for Fas/Fas ligand interactions. Proc Natl Acad Sci USA 1997;94:5750-5755
  13. Cifone MG, De Maria R, RoncaioIi P, et aI. Apoptotic signaIing through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1994;180:1547-1552 https://doi.org/10.1084/jem.180.4.1547
  14. GuIbins E, Bissonnette R, Mahboubi A, et aI. FAS-in-duced apoptosis is mediated via a ceramide-initiated RAS signaIing pathway. Immunity 1995;2:341-351 https://doi.org/10.1016/1074-7613(95)90142-6
  15. Tepper CG, Jayadev S, Liu B, et aI. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci USA 1995;92:8443-8447 https://doi.org/10.1073/pnas.92.18.8443
  16. FuIda S, Scaffidi C, Pietsch T, et aI. Activation of the CD95 (APO-1/Fas) pathway in drug- and -irradiation-induced apoptosis of brain tumor cells. Cell Death Differ 1998;5;884-893
  17. Eichhorst ST, MuIIer M, Li-Weber M, et aI. A novel AP-1 element in the CD95 Iigand promoter is required for induction with anticancer drugs. Mol Cell Biol 2000;20:7826-7837 https://doi.org/10.1128/MCB.20.20.7826-7837.2000
  18. Sheard MA, lonizing radiation as a recponse-enhancing agent for CD95-mediated apoptosis. Int J Cancer 2001;96:213-220
  19. Adachi MR, Watanabe-Fudunaga, Nagata S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci USA 1993;90:1756-1760 https://doi.org/10.1073/pnas.90.5.1756
  20. Chu JL, J Drappa A, Parnassa, et aI. The defect in Fas mRNA expression in MRL/Ipr mice is associated with insertion of the retrotransposon, ETn. J Exp Med 1993;178:723-730 https://doi.org/10.1084/jem.178.2.723
  21. Wu J, Zhou T, He J, et aI. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J Exp Med 1993;178:461-468 https://doi.org/10.1084/jem.178.2.461
  22. Kobayashi S, Hirano T, Kakinuma M, et aI. Transcriptional repression and differential splicing of Fas mRNA by early transposon (ETn) insertion in autoimmune LPR mice. Biochem Biophys Res Commun 1993;191:617-624 https://doi.org/10.1006/bbrc.1993.1262
  23. Stephens LC, Hunter N, Ang KK, et aI. Development of apoptosis in irradiated murine tumors as a function of time and dose. Radiat Res 1993;135:75-80 https://doi.org/10.2307/3578399
  24. Kimura K, GeImann EP. Tumor necrosis factor-alpha and Fas activate complementary Fas-associated death domaindependent pathways that enhance apoptosis induced gamma-irradiation. J Biol Chem 200;275:8610-8617 https://doi.org/10.1074/jbc.275.12.8610
  25. Booker J, Reap EA, Cohen PL. Expression and function of Fas on cells damaged by $\gamma$-irradiation in B6 and B6/Ipr mice, J Imm 1998;161:4536-4541
  26. Seong J, Kim SH, Lee WJ, et aI. Strain-specific differences in radiation-induced apoptosis in murine tissues. J Korean Cancer Assoc 1997;30:1259-1268
  27. Seong J, Pyo HR, Chung EJ, et aI. Effect of small dose of radiation on induction of apoptosis in murine tumors. J Korean Soc Thera Radio Oncol 1999;17:307-313
  28. Seong J, Kim SH, Suh CO. Enhancement of tumor radioresponse by combined chemotherapy in murine hepatocarcinoma. J Gastroenterol Hepatol 2001;16:883-889 https://doi.org/10.1046/j.1440-1746.2001.02533.x
  29. Seong J, Kim SH, Pyo HR, et aI. Effect low-dose irradiation on induction of an apoptotic adaptive response in the murine system. Radiat Environ Biophys 2001;40:335-339 https://doi.org/10.1007/s00411-001-0122-7