Characteristic Stereostructures and Regioselectivity of Biogenic Pathway of FPTase Inhibition Materials Isolated from Artemisia sylvatica

그늘쑥(Artemisia sylvatica Max.)으로부터 분리된 FPTase 저해활성 물질들의 구조적인 특성과 biogenic pathway의 배향성

  • Kwon, Byung-Mok (Korea research Institute of Bioscience and Biotechnology) ;
  • Sung, Nack-Do (Divition of Applied Biology & Chemistry, College of Agriculture & Life Sciences, Chungnam National University)
  • 권병목 (한국생명공학원) ;
  • 성낙도 (충남대학교 농과대학 응용생물화학부)
  • Published : 2002.11.30

Abstract

Characteristic stereostructures of farnesyl protein transferase (FPTase) inhibition materials isolated from Artemisia sylvatica and regioselectivity of biogenic Diels-Alder reactions between dehydromatricarin molecules A and B were examined quantitatively. Results revealed that the major reaction of frontier molecular orbital (FMO) interaction proceeds through charge-control reaction between LUMO of A16, dienophile and HOMO of B1, diene, and the isolated 8-acetylarteminolide and artanomaloide were minor products. FPTase inhibition activity and hydrophobicity of 8-acetylarteminolide were $pI_{50}=3.75$ and logP=2.62, respectively. FPTase inhibition activity of 8-acetylarteminolide was higher than those of artanomaloide and dehydromatricarin.

그늘쑥(Artemisia sylvatica Max.)으로부터 분리된 sesquiterpene lactone계 화합물들의 구조적인 특성과 FPTase 저해활성을 나타내는 dehydromatricarin A, B 분자들 사이 biogenic Diels-Alder 반응의 경계분자 궤도함수 (FMO)상호작용에 대한 배향성을 검토하였다. 그 결과, 주 생성물이 얻어지는 반응은 B1(diene)의 HOMO와 A16(dienophile)의 LUMO간 hard-hard한 charge-control 반응이었다. 그리고 AO계수 분극간의 상호작용에 따른 배향성은 분리된 8-acetylarteminolide와 artanomaloide들이 모두 biogenic Diels-Alder 반응의 부 생성물들임을 시사하였다. 또한, 8-acetyl-arteminolide의 FPTase 저해활성($pI_{50}=3.75$ 및 logP=2.62)은 큰 반면에 artanomaloide 및 dehydromatricarin은 작았다.

Keywords

References

  1. Kwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y, Bok, S. H., Chun, S. K., Kim, J. A. and Lee, I. R. (1996) 2-Hydroxycinnamaldehyde from stem bark Cinnamoum cassia. Ptanta Med. 62, 183-184 https://doi.org/10.1055/s-2006-957851
  2. Sung, N. D., Kwon, B. M., Lim, C. H. and Cho Y. K. (1998) Inhibition of famesyl protein transferase by ortho-substituted cinnamaldehyde derivatives. J. Korean Soc. Agric Chem. Biotechnol. 41, 218-221
  3. Kwon, B. M., Lee S. H., Choi, S. U., Park, S. H., Lee, C. 0., Cho, Y. K., Sung, N. D. and Bok, S. H. (1998) Synthesis and in vitro cytotoxicity of cinnamaldehydes to human solid tumor cells. Arch. Pharm. Res. 21, 147-152 https://doi.org/10.1007/BF02974019
  4. Lee, H. S., Kang, H. M., Song, H. C., Lee, H., Lee, U. C., Son, K. H., Kim, S. H. and Kwon, B. M. (2000) Sesquiteipene lactones, inhibitors of famesyl protein transferase, isolated from the flower of Artemisia sytvatica. Tetrahedron 56, 4711- 4715 https://doi.org/10.1016/S0040-4020(00)00394-X
  5. Lee, S. H., Kim, M. J., Bok, S. H., Lee, H. and Kwon, B. M. (1998) Arteminolide, an inhibitor of famesyl transferase from Artemisia sylvatica. J. Org. Chem. 63, 7111-7113 https://doi.org/10.1021/jo980919p
  6. Sung, N. D., Yu, S. J., Myung, P. K., Kwon, B. M. and Lee, S. H. (1999) The famesyl protein transferase inhibition activity of chalcone derivatives. J. Korean Soc. Agric. Chem. Biotechnol. 42, 252-255
  7. Sung, N, D., Yu, S. J., Myung, P. K. and Kwon, B. M. (2000) Quantitative structure activity relationshiP (QSAR) analyses on the famesyl protein transferase inhibition activity of hetero ring substituted chalcone derivatives by the Hansch and Free-Wilson method. J. Korean Soc. Agric. Chem. Biotechnol. 43, 95-99
  8. Kim, J. H., Kim, H. K., Jeon, S. B., Son, K. H., Kim, E. H., Kang, S. K., Sung, N. D. and Kwon, B. M. (2002) New sesquiterpene-monoterpene lactone, artemisolide, isolated from Artemisia argyi. tetrahedron Letter 43, 6205-6208 https://doi.org/10.1016/S0040-4039(02)01315-1
  9. Pedretti, A., Villa, A. M., Villa, L., Vistoli, G. (1997) Interactions of some PGHS-2 selective inhibitors with the PGHS-l: An automated docking study by BioDock. Famrmaco, 52, 487-491
  10. Pedretti, A., Villa, L. and Vistoll, G. (2002) Modeling of binding modes and inhibition mechanism of some natural ligands of famesyl transferase using molecular docking. J. Med. Chem. 45, 1460-1465 https://doi.org/10.1021/jm011075w
  11. Hansch, C. and Leo, A. (1995) In Exptoring QSAR: fundamentals and AppUcations in Chemistry and Biotogy ACS Professional Reference Book, ACS, Washington, D.C
  12. Houk, K. N. (1975) The frontier molecular orbital theory of cycloaddition reaction. Acc. Chem. Res. 8, 361-369 https://doi.org/10.1021/ar50095a001
  13. Fleming, I. (1976) In Frontier Orbitals and Organic Chernical Reactions John Wiley & Sons, Toronto. pp. 34-37
  14. SYBYL: Tripos, Inc., S. Hanley Road, St. Louis, MO. 63144-2913, USA
  15. David, R. and HopSnger, A. J. (1994) Application of benetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci. 34, 854-866 https://doi.org/10.1021/ci00020a020
  16. Pople, J. A. and Bevendge, P. L. (1970) In Approximate Molecutar Orbital Theory McGraw-Hill Book Co., New York. p. 77
  17. Auclair, K., Sutherland, A., Kennedy, J., Witter, D. J., Van denHeever, J. R, Hutchinson, C. R. and Vederas, J. C. (2000) Luvastatin Nonaketide Synthase Catalyzes an Intramolecular Diels-Alder Reaction of a Substrate Analogue. J. Am Chem. Soc. 122, 11519-11520 https://doi.org/10.1021/ja003216+
  18. Fujita, T. (1983) In Progress in Physical Organic Chemistry Vol. 14, Substitution Effects in the Partition Coefficient of Disubstituted Benzenes: Bidirectional Hammett-Type Retationships. John Wiley & Sons, Toronto. pp. 75-113 https://doi.org/10.1002/9780470171936.ch2