Concentration of Arsenic in Rice Plants and Paddy Soils in the Vicinity of Abandoned Zinc Mine

폐광산 인근 논토양과 수도의 비소함량 조사

  • Kim, Chan-Yong (KyoungBuk Agriculture Technology Administration) ;
  • Park, Man (Dept. of Agricultural Chemistry, KyungBuk National University) ;
  • Lee, Dong-Hoon (Dept. of Agricultural Chemistry, KyungBuk National University) ;
  • Choi, Choong-Lyeal (Dept. of Agricultural Chemistry, KyungBuk National University) ;
  • Kim, Kwang-Seop (Dept. of Agricultural Chemistry, KyungBuk National University) ;
  • Choi, Jung (Dept. of Agricultural Chemistry, KyungBuk National University) ;
  • Seo, Young-Jin (KyoungBuk Agriculture Technology Administration)
  • 김찬용 (경상북도농업기술원 시험연구국) ;
  • 박만 (경북대학교 농화학과) ;
  • 이동훈 (경북대학교 농화학과) ;
  • 최충렬 (경북대학교 농화학과) ;
  • 김광섭 (경북대학교 농화학과) ;
  • 최정 (경북대학교 농화학과) ;
  • 서영진 (경상북도농업기술원 시험연구국)
  • Published : 2002.08.31

Abstract

Soils near abandoned zinc mines were known to be contaminated with arsenic-rich mining by-products. To examine the potential impacts of arsenic- contaminated soils on plant growth, surface soils were subjected to sequential extraction. Results revealed that 54% and 74% total As and 74% total extractable As were bound to iron hydrous oxide, and water soluble fraction was below detection limit. Arsenic faction extracted using the Koran standard method(dissolution of metals via treatment of 1 N HCI) was strongly correlated with the Fe-bound As fraction ($r^2=0.884**$). Arsenic level in rice plant roots was the highest with a maximum value of 154.9 mg/kg, whereas it was below 0.6 mg/kg in grains. Arsenic level in rice plant roots was strongly correlated with those of Al-bound As ($r^2=0.821**$) and 1N HCI-extractable As levels ($r^2=0.801**$).

토양중 비소함량이 식물체내 이동에 미치는 영향을 조사하기 위하여 아연 폐광산 근처 논토양과 벼에 함유된 비소함량을 조사하였다. 논토양 중 비소는 total As의 약 52.9%, extractable As의 74%정도가 iron oxide phase에 bound된 비소(Fe-As)였으며 수용성 비소(Ws-As)는 대부분 검출한계 이하였다. 비소의 연속추출 결과, extractable As fraction중 Fe-As가 1 N-HCI 가용성 As와 가장 높은 상관을 나타내었고, 이것은 토양중 Fe-As 의 함량이 많기 때문으로 생각된다. 식물체 부위별 비소의 농도는 뿌리>잎 줄기>곡실순이었으며 곡실 중에 함유된 비소농도는 FDA 식품기준 1.08mg/kg 이하였다. 토양중 As fraction과 식물체 부위별 As함량간의 상관관계를 분석한 결과 Al-As fraction이 뿌리와 0.821, 줄기 0.888, 잎 0.777로 비교적 높은 상관계수를 나타내었고, 작물에 가장 잘 이용될 수 있는 비소의 형태는 Al-As fraction인 것으로 판단된다.

Keywords

References

  1. Anderson, M. A., Ferguson, J. F. and Gavis, J. (1975) Arsenate adsorption on amorphous aluininium hydroxide. J. Colloid Interface. Sci. 54, 391-399 https://doi.org/10.1016/0021-9797(76)90318-0
  2. Deuel, L. E. and Swoda, A. R. (1972) Arsenic solubility in a reduced environment. Soit Sci. Soc. Am. Proc. 36, 276-278 https://doi.org/10.2136/sssaj1972.03615995003600020022x
  3. Oscarson. D. W., Hwang, P. M., Liaw, W. K. and Hammer, H. T. (1983) Kinetics of oxidadon of arsenite by manganese oxides. Soil Sci. Soc. Am. J. 47, 644-648 https://doi.org/10.2136/sssaj1983.03615995004700040007x
  4. Pierce. M. L. and Moore, C. B. (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16, 1247-1253 https://doi.org/10.1016/0043-1354(82)90143-9
  5. Takamatzu, T., Aoki, H. and Yoshida, T. (1982) Determination of arsenate, mono-methyl arsenate, and di-methyl arsenate in soil polluted with arsenic. Soil. Sci. 133, 239-246 https://doi.org/10.1097/00010694-198204000-00007
  6. Goldberg, S. and Glaubig, R. A. (1988) Anion sorption on a calcareous, montmorllilonidc soil-arsenic. Soit Sci. Soc. Am. J. 52, 1297-1300 https://doi.org/10.2136/sssaj1988.03615995005200050015x
  7. Hingston. F. J., Posner, A. M. and Quirk, J. P. (1971) In Suiface chemistry of oxides. Discussions of the Faraday Society The Faraday Soc. London. pp. 334-343
  8. Robins. R. G. (1981) In The sotubitity of metal arsenate. Metallurgical Trams B. The American Society for metals and the Metallurgical Society of AIME. 12B, 103-109
  9. Sadique. M., Zaid, T. H. and Mian, A. A. (1983) Environmental behavior of arsenic in soils. theoredcal. Water, Air, Soil Pollut. 20, 369-377 https://doi.org/10.1007/BF00208511
  10. Dove. P. M. and Rimstidt, J. D. (1985) The solubility and stability of scordite, FeAsOU. 211,0. Am. Minerats. 70, 838-
  11. Nishimura. T, Itho, C. T. and Tozawa, K. (1987) In Stabilies and splubitities of metal arsenite and arsenate in water and effect of sutfate and carbonate ions on their sotubiIities. Arsenic metallurgy, fundamentals and applicadons; procedings of symposium. pp. 77-98
  12. Oh, Y. T. and Sedberry, Jr. J. E. (1974) Arsenic toxicity of lice and its interrelation with zinc. J. Korean Soc. Soit Sci. Fert. 1, 43-47
  13. Lee, M. H. and Lim, S. K. (1987) Behaviors of arsenic in paddy soils and effects of absorbed arsenic on physiological and ecological characteristics of rice plant. III. Effect of water management on As uptake and the growth of rice plant at As added soil. Korean. J. Envimn. Agric. 6, 1-6
  14. Lee, M. H., Lim, S. K. and Kim, B. Y. (1987) Behaviors of arsenic in paddy soils and effects of absorbed arsenic on physiological and ecological characterisdcs of rice plant. IV. Effect of As content in water culture on transpiradon, stomatal resistance, temperature and humidity in the leaves of rice plant. Korean J. Envimn. Asric. 6, 39-45
  15. Lee, M. H., Lim, S. K., Park, Y. D. and Lee, S. H. (1988) Behaviors of arsenic in paddy soils and effects of absorbed arsenic on physiological and ecological characterisdcs of rice plant. V. Effect of arsenic added to soil on ecological charactehstic of the lice plant. Korean J. Environ. Agric. 7, 21-25
  16. National institute of agiicultural science and technology. (1988)In Method of soil chemical analysis Suwon, Korea. pp. 26-109
  17. Onken, B. M. and Adiiano, D. C. (1997) Arsenic availability in soil with time under saturated and subsaturated condidons. Soil Sci. Soc. Am. J. 61, 746-752 https://doi.org/10.2136/sssaj1997.03615995006100030007x
  18. SPSS. 1986. In SPSS/$PC^+$ for IBM PC/XT/AT. SPSS hic. pp. B143-151
  19. Goldberg. S. (1986) Chemical modeling of arsenate adsorpdon on aluminium and iron oxide minerals. Soil Sci. Soc. Am. J. 50,1154-1157 https://doi.org/10.2136/sssaj1986.03615995005000050012x
  20. Davenport. J. R. and Peryea, F. J. (1991) Phosphate fertUizers influence leacInng of lead and arsenic in a soil containinated with lead arsenate. Water, Air, Soil Pollut. 57, 101-110. https://doi.org/10.1007/BF00282873
  21. Mok, W. M., Riley, J. A. and Wai, C. M. (1988) Arsenic speciadon and quality of groundwater in a lead zinc niine, Idaho. Water Res. 22, 769-774 https://doi.org/10.1016/0043-1354(88)90189-3
  22. Mok, W. M. and Wai, C. M. (1990) Distnbution and mobilizadon of arsenic and antimony species in the Coeur D, Alene river, Idaho. Environ. Sci. Technol. 24, 102-108 https://doi.org/10.1021/es00071a012
  23. Adriano, D. C. (1986) In Trace etements in the terrestrialerwironment Springer-Verlag, New York. pp
  24. Dar1and. J. E. and InskeeP, W. P. (1997) Effect of pH and phosphate competition on the transport of arsenate. J. Environ. Qual. 26, 1133-1139 https://doi.org/10.2134/jeq1997.00472425002600040027x
  25. McDowell, R. W., Condron, L. M., Mahieu, N., Brookes, P. C., Poulton, P R. and Sharpley, A. N. (2002) Analysis of potentially mobile phosphoms in arable soils using solid state nuclear magnedc resonance, J. Envimn. Qual. 31, 450-456 https://doi.org/10.2134/jeq2002.0450
  26. Lee, M. H. (1986) Behaviors of arsenic in paddy soils and effects of absorbed arsenic on physiological and ecological characteiistics of rice plant, Ph.D. Thesis, Korea university, Seoul. p. 6
  27. Allaway, W. H. 1968. Agronomic controls over the envtronmental cycling of trace elements. Advances in Agronomy 20, 235-274 https://doi.org/10.1016/S0065-2113(08)60858-5