밀 arabinoxylan의 면역세포 활성화 작용

Immune Cell Stimulating Activity of Wheat Arabinoxylan

  • 최은미 (연세대학교 생물산업소재연구센타) ;
  • 임태수 (연세대학교 생물소재공학과) ;
  • 이혜림 (연세대학교 생물소재공학과) ;
  • 황재관 (연세대학교 생물산업소재연구센타)
  • Choi, Eun-Mi (Bioproducts Research Center, Yonsei University) ;
  • Lim, Tae-Soo (Department of Biomaterials Science and Engineering, Yonsei University) ;
  • Lee, Hye-Lim (Department of Biomaterials Science and Engineering, Yonsei University) ;
  • Hwang, Jae-Kwan (Bioproducts Research Center, Yonsei University)
  • 발행 : 2002.06.01

초록

밀 배아에서 제조된 arabinoxylan(A1: low MW, A2: medium MW, A3, high MW)의 면역세포 활성화 작용을 invitro에서 마우스 비장 림프구와 복강 대식세포를 대상으로 관찰하여 다음과 같은 결과를 얻었다. 밀 arabinoxylan으로 처리된 마우스 비장 림프구의 생존능을 살펴보았을 때 50, $100\;{\mu}g/mL$ 농도에서 A3이 비장 림프구의 생존을 증가시켰고 비장 림프구에 $10\;{\mu}g/mL$ LPS를 첨가하여 활성화된 상태에서 $20\;{\mu}g/mL$ arabinoxylan을 처리한 결과 A1과 A3이 대조군에 비해 비장 림프구의 생존을 유의적으로 증가시켰다(p<0.05). 마우스 복강 대식세포의 생존율 관찰한 결과 $10{\sim}100\;{\mu}g/mL$ 농도에서 A1과 A3은 대식세포의 생존을 유의적으로 증가시켰다(p<0.05). 대식세포의 암세포 살해능을 살펴보았을 때 $5\;{\mu}g/mL$ 농도의 A3이 암세포독성을 유의적으로 증가시켰으며, phagocytic index를 측정한 결과 arabinoxylan을 $20\;{\mu}g/mL$ 농도로 처리했을 때, 대조군에 비하여 유의적인 증가 효과를 나타내어 밀 arabinoxylan이 대식세포의 식세포 작용을 증가시킴을 알 수 있었다(p<0.05). 또한 arabinoxylan은 대식세포의 lysosomal phosphatase와 myeloperoxidase 활성을 유의적으로 증가시켰으며(p<0.05) NO 생성을 감소시키는 경향을 나타내었다. 대식세포에서 분비되는 $H_2O_2$의 양을 측정한 결과, arabinoxylan은 유의적인 $H_2O_2$ 생성 증가를 나타내었고(p<0.05), NBT 환원법으로 대식세포의 $O_2$ 생성 지표를 측정하였을 때, arabinoxylan은 유의적으로 대식세포의 NBT 환원을 증가시켰다(p<0.05). 이상의 결과로 미루어 볼 때, 밀 arabinoxylan의 면역세포 활성화 효과는 대식세포에서 분비되는 lysosomal enzyme 및 반응성산소종(ROI)의 생성과 밀접한 관련이 있는 것으로 생각된다.

Effects of wheat arabinoxylan on mouse spleen lymphocytes and peritoneal macrophages were examined in vitro. Among three wheat arabinoxylans (A1: low MW, A2: medium MW, A3: high MW), A3$(50{\sim}100\;{\mu}g/mL)$ increased the viability of spleen lymphocytes up to $114{\sim}125%$ of the control. A1 and A3 $(20\;{\mu}g/mL)$ increased the viability of lipopolysaccharide-treated lymphocytes synergistically. Viability of murine peritoneal macrophages treated with wheat arabinoxylans $(10{\sim}100{\mu}g/mL)$ was increased up to $135{\sim}175%$ of the control. The cytotoxic activity of macrophages against murine lymphocytic leukemic cell increased in the presence of wheat arabinoxylan. Phagocytic index of macrophages treated with wheat arabinozylans $(20\;{\mu}g/mL)$ significantly increased $197{\sim}232%$ compared with the control, and lysosomal phosphatase and myeloperoxidase activities also increased significantly (p<0.05). Treatment of wheat arabinoxylans tended to decrease nitrite production, but significantly stimulated $H_2O_2\;and\;O_2$ productions of macrophages (p<0.05). These results indicate that the immunostimulating effect of wheat arabinoxylan may be closely related with lysosomal enzyme activity and reactive oxygen intermediate production of macrophages.

키워드

참고문헌

  1. Lee, H.Y. and Lee, H.S. Stimulatory effect of Korean red-ginseng extract on the proliferation and cellular activity of lymphocytes. Korean J. Ginseng Sci. 22: 60-65 (1998)
  2. Kim, K.H., Lee, I.R., Jung, I.S., Chung, H.Y. and Yun, Y.S. The pattern of cytokine mRNA expression induced by polysacchaiide from Panax ginseng C.A. Meyer. J. Ginseng Res. 22: 324-330 (1998)
  3. Han, M.D., Lee, E.S., Kim, Y.K., Lee, J.W., Jeong, H. and Yoon, K.H. Production of nitric oxide in Raw 264.7 macrophages treated with Ganoderan, the $\beta$-glucan of Ganoderma lucidum. The Korea J. Mycology 26: 246-255 (1998)
  4. Adams, G.A. Constitution of a hemicellulose from wheat bran. Can. J. Chem. 33: 56-67 (1955) https://doi.org/10.1139/v55-009
  5. Ring, S.G. and Selvedran, R.R. Isolation and analysis of cell wall material from beeswing bran (Triticum aestivum). Phytochemistry 19: 1723-1730 (1980) https://doi.org/10.1016/S0031-9422(00)83802-9
  6. Ghoneum, M. Enhancement of human killer cell activity by modified arabinoxylan from rice bran (MGN-3). Int. J. Immunotherapy 14: 89-99 (1998)
  7. Saiki, I. and Fidler, I.J. Synergistic activation of recombinant mouse interferon- and muramyl dipeptide of tumoricidal proper-ties in mouse peritoneal macrophages. J. Immunol. 135: 684-688 (1984)
  8. Klimetzek, V. and Remold, H.G. The murine bone marrow mac-rophage, a sensitive indicator cell for murine migration inhibitory factor and a new method for their harvest. Cell Immun. 53: 257 (1980) https://doi.org/10.1016/0008-8749(80)90327-5
  9. Tubaro, A., Florio, C., Luxich, E., Vertua, R., Loggia, R.D., and Yasumoto, T. Suitability of the MTT-based cytotoxicity assay to detect okadaic acid contamination of mussels. Toxicon 34: 965-974 (1996) https://doi.org/10.1016/0041-0101(96)00073-6
  10. Yoshida, T, Sakai, M., Kitao, T, Khil, S.M., Araki, S., Saitoh, R., Inpno, T. and Inglis, V. Immunomodulatory effects of the fer-mented products of chicken egg, EF203, on rainbow trout. Onco-rhynchus mykiss. Aquaculture 109: 209-214 (1993)
  11. Burstone, M.S. and Kalpow, L.S. Cytochernical demonstration of acid phosphatase in hematopoietic cells in healthy and in various hematological disorder using azo dye technique. J. Histochem. Cytochem. 12: 805 (1964) https://doi.org/10.1177/12.11.805
  12. Pinegin, B.V., Butakov, A.A. and Shelcina, T.L. Complex of methods for determination of fimctional activity of phagocyting cells. pp. 146-154 In: Ecological Immunology. Khaitov, R.M., Pinegin, B.V. and Istamov, H.I. (eds.). Moscow: VNIRO. (1995)
  13. Kang, N.S., Moon, E.Y., Cho, C.G. and Pyo, S. Immunomodulating effect of garlic com-ponent, allicin, on murine peritoneal mac-rophages. Nutr. Res. 21: 617-626 (2001) https://doi.org/10.1016/S0271-5317(01)00269-X
  14. Munoz, M., Cedeno, R., Rodriguez, J., van der Knaap, W.P.W., Mialhe, E. and Bachere, E. Measurement of reacdve oxygen intermediate production in haemocytes of penaeid shhmp, Penaeus vannamei. Aquaculture 191: 89-107 (2000) https://doi.org/10.1016/S0044-8486(00)00420-8
  15. Kim, K.H., Jung, I.S., Chung, H.Y, Jo, S.K. and Yun, Y.S. Pre-clinical evaluadon of polysaccharides extracted from Korea red-ginseng as an antineoplastic immunostimulator. Korean J. Ginseng Sci. 21: 78-84 (1997)
  16. De Duve, C. and Wattiaux, R. Functions of lysosome. Ann. Rev. Physiol. 28: 435 (1966) https://doi.org/10.1146/annurev.ph.28.030166.002251
  17. Nathan, C.F. and Hibbs, J.B. Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Current Opinion Immunol. 3: 65-70 (1991) https://doi.org/10.1016/0952-7915(91)90079-G
  18. Klebanoff, S.J. Phagocytic Cells: Production of Oxygen Metabo-lism in Inflammation; Basic Principles and Clinical Correlates. pp. 391-444 (eds.) Gallin, J.I., Goldstein, I.M. and Snyderman, R. Raven Press, New York. (1988)
  19. Bao, X., Duan, J., Fang, X. and Fang, J. Chemical modifications of the (1$\rightarrow$3)-$\alpha$-D-g1ucan from spores of Ganoderma lucidum and investigation of their physicochemical properties and immu-nological activity. Carbohydrate Research 336: 127-140 (2001) https://doi.org/10.1016/S0008-6215(01)00238-5
  20. Zhang, L.N., Zhang, M., Zhou, Q., Chen, J.H. and Zeng, F.B. Solution properties of antitumor sulfated derivative of $\alpha$-(1$\rightarrow$3)-D-glucan from Ganoderma lucidum. Biosci. Biotechnol. Biochem. 64: 2172-2178 (2000) https://doi.org/10.1271/bbb.64.2172
  21. Yamada, H. and Kiyohara, H. Complement activating polysaccha-rides from medicinal herbs. pp. 161-202. In: Immunomodulating Agents from Plants. Wagner, H. (ed.). Basel: Birkhauser (1999)
  22. Zhao, J.F., Kiyohara, H., Yamada, H., Takemoto, N. and Kawa-mura, H. Heterogeneity and characterization of mitogenic and anticomplementary pectic polysaccharides from roots of Glycyrrhiza uratensis Fisch et DC. Carbohydrate Research 219: 149-172 (1991) https://doi.org/10.1016/0008-6215(91)89049-L
  23. Matsumoto, T., Cyong, J.C., Kiyohara, H., Matsui, H., Abe, A., Hirano, M., Danbara, H. and Yamada, H. The pectic polysaccha-ride from Bupleurum falcatum L. enhances immune complexes binding to peritoneal macrophages through Fc receptor expres-sion. Int. J. Immunopharmacolo. 15: 683-693 (1993) https://doi.org/10.1016/0192-0561(93)90141-K
  24. Shin, K.S., Kiyohara, H., Matsumoto, T. and Yamada, H. Rham- nogalacturonan II from the leaves of Panax ginseng C.A. Mayer as a macrophage Fc receptor expression-enhancing polysaccha-ride. Carbohydrate Research 300: 239-249 (1997) https://doi.org/10.1016/S0008-6215(97)00055-4
  25. Matsumoto, T. and Yamada, H. Regulation of immune complexes binding of macrophages by pectic polysaccharide from Bupteu-rum falcatum L.: pharmacological evidence for the requirement of intracellular calcium/calmodulin on Fc receptor up-regulation by bupleuran 2IIb. J. Pharm. Pharmacol. 47: 152-156 (1995) https://doi.org/10.1111/j.2042-7158.1995.tb05769.x
  26. Rasmussen, L.T. and Selhelid, R. The modulatory effect of lipo-proteins on the release of interleukin 1 by human peritoneal mac-rophages stimulated with -1,3-polyglucose derivatives. Scand. J Immunol. 29: 477-484 (1989) https://doi.org/10.1111/j.1365-3083.1989.tb01147.x
  27. Burger, R.A., Torres, A.R., Warren, R.P., Caldwell, V.D. and Hughes, B. Echinacea-induced cytokine production by human macrophages. Int. J. Immunpharmacol. 19: 371-379 (1997) https://doi.org/10.1016/S0192-0561(97)00061-1