Characterization of Lipoxygenase in AOT/Isooctane Reversed Micelles

AOT/isooctane 역미셀계내에서의 lipoxygenase 반응 특성

  • Chang, Pahn-Shick (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Lee, Kwang-In (Department of Food Science and Technology, Seoul National University of Technology)
  • 장판식 (서울산업대학교 식품공학과) ;
  • 이광인 (서울산업대학교 식품공학과)
  • Published : 2002.04.01

Abstract

An investigation was carried out to study the characteristics of lipoxygenase in dioctyl sulfosuccinate (aerosol-OT, AOT)/isooctane revered micelles of microaqueous system containing infinitesimal water. ${\alpha}-Linoleic$ acid as a substrate could be analyzed by the colorimetric methodology using 5%(w/v) cupric acetate-pyridine solution and the activity of lipoxygenase was able to be assayed by the degree of ${\alpha}-linoleic$ acid consumption per minute. Optimal pH, temperature, and R-value ([water]/[AOT]) were determined as the value of 5.0, $25^{\circ}C$, and 10.0, respectively. Kinetic analysis of the enzyme reaction under the optimal conditions showed that the values of $K_m$ and $V_{max}$ were 0.31 mM of ${\alpha}-linoleic$ acid and $384.16{\mu}mol$ of ${\alpha}-linoleic$ acid decomposed/min, respectively. The results indicate the reaction to be lipoxygenase-catalyzed oxidation of ${\alpha}-linoleic$ acid in AOT/isooctane reversed micellar system. The inhibitory effect of natural antioxidants on lipoxygenase showed little inhibitory effect of L-ascrobic acid while ${\alpha}-tocopherol$ showed 72% of inhibitory effect.

본 연구에서는 음이온 계면활성제인 dioctyl sulfosuccinate (aerosol-OT, AOT)와 비극성 유기용매인 isooctane으로 구성된 역미셀계를 이용하여 lipoxygenase의 반응특성을 살펴보았다. 기질로 사용되는 ${\alpha}-linoleic\;acid$가 5%(w/v) cupric acetate-pyridine 용액에 의하여 정량적으로 발색됨을 확인하였는 바, 기질이 단위시간당 소모되는 정도로서 lipoxygenase 효소의 활성을 측정하였다. Lipoxygenase 효소반응을 위한 최적 pH, 온도 및 R값 ([water]/[AOT]) 등을 측정한 결과 각각 5.0, $25^{\circ}C$, 10.0 등이었으며 $K_m$$V_{max}$값은 각각 0.31 mM of ${\alpha}-linoleic\;acid$$384.16{\mu}mol$ of ${\alpha}-linoleic\;acid\;decomposed/min$임을 확인함으로써, 역미셀계내에서 lipoxygenase 효소활성을 예민하고 안정되게 측정할 수 있었다. 한편, 지용성 항산화제의 일종인 ${\alpha}-tocopherol$을 역미셀계에 적용시킨 결과 최대 72%까지 lipoxygenase 효소의 활성도를 저해하는 것으로 판명되었으며, 이는 대두 가공품 및 곡류 가공품에 ${\alpha}-tocopherol$을 첨가함으로써 가공품의 품질을 향상시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Kruger, J.E., Lineback, D. and Stauffen, C.E. Enzymes and Their Role in Cereal Technology. American Association of Cereal Chemists, Inc., p. 241 (1987)
  2. Eskin, N.A. Grossman, S. and Pinsky, A. Biochemistry of lipoxy-genase in relation to food quality. CRC Crit. Rev. Food Sci. Nutr.9: 1-40 (1977)
  3. Galliard, T. and Chan, H.W. A comprehensive treatise, In: The Biochemistry of Plants, Vol. 4, p. 131. Stumpf, P.K. (ed.), Aca-demic Press, New York, USA (1980)
  4. Zakut, R. Grossman, S. Pinsky, A. and Wilchek, M. Evidence for an essential methionine residue in lipoxygenase. FEBS Lett. 72:107-110(1976)
  5. Choi, S.W. and Osawa, T. Isolation and idendification of lipoxy-genase inhibitor from nutmeg spice. Food Sci. Biotechnol. 5:156-160(1996)
  6. Choi, S.W., Kang, W.W., Chung, S.K. and Cheon, S.H. Antioxi-dative activity of flavonoids in persimmon leaves. Food Sci. Bio-technol.5:119-123(1996)
  7. Grosch, W. and Laskawy, G. Differences in the amount and range of volatile carbonyl compounds fonned by lipoxygenase isoen-zymes from soybeans. J. Agric. Food Chem. 23: 791-794 (1975) https://doi.org/10.1021/jf60200a003
  8. Lee, Y.C. Lipoxygenase and off-flavor development in some fro-zen foods. Korean J. Food Sci. Technol. 17: 53-58 (1981)
  9. Grossman, S., Trop, M., Avtalion, R. and Pinsky, A. Properties of agarose-bound soya-bean lipoxygenase. Biochem. J. 127: 909-910(1972) https://doi.org/10.1042/bj1270909
  10. Rho, Y.T., Kim, Y.S., Cho, H.Y. and Pyun, Y.R. A study on pro-tein separation with AOT-isooctane reverse micellar system.Korean J. Food Sci. Technol. 21: 542-547 (1989)
  11. Chang, P.S., Kang, S.T. and Rhee, J.S. A general kinetic model for lipase-catalyzed glycerolysis of triolein. Food Sci. Biotechnol 1:46-49(1992)
  12. Chang, P.S. Hydrolysis of phosphatidylcholine in aerosol-OT/isooctane reversed micelles by phospholipase $A_2$. Korean J. Food Sci. Technol. 29: 26-31 (1997)
  13. Lowry, R.R. and Tinsley, I.J. Colorimetric analysis of free fatty acids by cupric sulfate, J. Am. Oil Chem. Soc. 53: 470-472(1976) https://doi.org/10.1007/BF02636814
  14. Shipe, W.F, Senyk, G.F. and Fountain, K.B. Modification of cupric sulfate method for the analysis of free fatty acids, J. Dairy Sci. 63: 193-198 (1980) https://doi.org/10.3168/jds.S0022-0302(80)82913-4
  15. Seoud, A.A.E. Acidities and basicities in reversed micellar sys-tems. In: Reverse Micelles, p. 81. Luisi, P.L. and Straub, B.E.(eds.), Plenum Press, New York, USA (1984)
  16. Shin, H.S. The Newest Food Chemistry, p. 445. Kwangmungak,Seoul(1995)
  17. Nakayama, T., Takeura, Y. and Ueda, U. Visible spectrophotomet-ric assay, Purification and molecular properties of a lipoxygenase from egg plant (Solanum melongena Linne) fruits. Biochem. Bio-phys. Res. Commun. 214: 1067-1072 (1995) https://doi.org/10.1006/bbrc.1995.2394
  18. Kim, D.K., Han, K.Y. and Noh, B.S. Characteristics of crude lipoxygenase in Chinese cabbages. Korean J. Food Sci. Technol.29: 710-715 (1997)
  19. Boyes, S., Perera, C. and Young, H. Kiwifruit lipoxygenase:Preparation and characteristcs. J. Food Sci. 57: 1390-1395 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb06866.x
  20. Chang, M.J., Cho, I.Y. and Lee, S.K. Characteristics of hydroper-oxide lyase and lipoxygenase activity in cucumber (Cucumis Sati-vus) fruit. Korean J. Food Sci. Technol. 29: 314-319 (1997)
  21. Chang, P.S., Rhee, J.S. and Kim, J.J. Continuous glycerolysis of olive oil by immobilization on liposome in reversed micelles. Biotechnol. Bioeng. 38: 1159-1165 (1991) https://doi.org/10.1002/bit.260381007
  22. Zaks, A. and Klibanov, A.M. Enzymatic catalysis in organic media at $100^\circ C$. Science 224: 1249-1251 (1984) https://doi.org/10.1126/science.6729453
  23. Barbaric, S. and Luisi, P.L. Micellar solubilization of biopolymers in organic solvents. 5. Activity and conformation of $\alpha$-chymot-rypsin in isooctane-AOT reversed micelles. J. Am. Chem. Soc. 103:4239-4244(1981) https://doi.org/10.1021/ja00404a044
  24. Eicke, H. F. On the stabilization of micelles in apolar solvents by solubilized ions and polar liquids. J. Coll. Interface Sci. 52: 65-76 (1975) https://doi.org/10.1016/0021-9797(75)90303-3
  25. Eicke, H.F. and Shepherd, J.C.W. Dielectric properties of apolar micelle solutions containing solubilized water. Helv. Chim. Acta 57: 1951-1963 (1974) https://doi.org/10.1002/hlca.19740570708
  26. Fletcher, P.D.L, Freedman, R.B., Robinson, B.H., Rees, G.D., and Schmacker, R. Lipase-catalyzed ester synthesis in oil-continuous microemulsions. Biochim. Biophys. Acta 912: 278-282 (1987) https://doi.org/10.1016/0167-4838(87)90098-7
  27. Grandi, C., Smith, R.E., and Luisi, P.L. Micellar solubilization of biopolymers in organic solvents: Activity and conformation of lysozyme in isooctane reverse micelles. J. Biol. Chem. 256: 837-843(1981)
  28. Han, D. and Rhee, J.S. Characteristics of lipase-catalyzed hydrol-ysis of olive oil in AOT-isooctane reversed micelles. Biotechnol. Bioeng. 28: 1250-1255 (1986) https://doi.org/10.1002/bit.260280817
  29. Im, H.S., Cho, Y.H. and Rhee, C.O. Effect of inhibitor on lipoxy-genase inactivation in soybean homogenates. Korean J. Food Sci. Technol. 27: 19-24 (1995)