Antioxidant Activity of Anthraquinones from Morinda elliptica

  • Ismail, Nor Hadiani (Institute of Bioscience, Universiti Putra Malaysia,Faculty of Applied Science, Universiti Teknologi MARA) ;
  • Mohamad, Habsah (Institute of Bioscience, Universiti Putra Malaysia) ;
  • Mohidin, Amran (Institute of Bioscience, Universiti Putra Malaysia) ;
  • Lajis, Nordin Hj. (Institute of Bioscience, Universiti Putra Malaysia)
  • Published : 2002.06.01

Abstract

Antioxidative properties of fifteen anthraquinone derivatives, including eleven atural anthraquinones isolated from the roots of Morinda elliptica and four from synthetic origin were evaluated using thin layer chromatography (TLC), ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. Five of the compounds, nordamnacanthal, damnacanthal, 2-formyl-1-hydroxyanthraquinone, morindone and alizarin showed higher antioxidative activity than standard natural antioxidant, ${\alpha}-tocopherol$, on the FTC assay. Morindone and alizarin showed the strongest antioxidant activity. The results from the bioassay using TBA method correlated well with the results of the FTC method.

Keywords

References

  1. Burkill, I.H. (1966) A Dictionary of Economics Products of the Malay Peninsular. 2 vols. London: Crown Agents to the Colonies (Reprint: Kuala Lumpur, Ministry of Agriculture and Cooperatives)
  2. Chang, W.H., H.X. Luu and A.C. Cheng. A TLC-fluorescent method for detecting and evaluatingcomponents. J. Food Sci. 48, 658-659individual antioxidative (1983) https://doi.org/10.1111/j.1365-2621.1983.tb10817.x
  3. Huang, S.S., S.F. Yeh and C.Y. Hong.derivatives on lipid peroxidation instructure-activity relationship. Joumal1365-1368 (1995)Effect of anthraquinone rat heart mitochondna: Natural Products. 58(9), 1365-1368 (1995) https://doi.org/10.1021/np50123a005
  4. Gordon, M.H. Dietary Antioxidants in Disease prevention. Natural Products Report, 13(4), 265-273 (1996) https://doi.org/10.1039/np9961300265
  5. Kikuzaki, H. and N. Nakatani. Antioxidant effects of some ginger constituents. J. Food Sci. 58(6), 1407-1410 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
  6. Masuda, T. and A. Jitoe. antioxidadve antiimflamatory compounds from tropical gingers: Isolation, structure determination, and activities ofcassumunins A, B, and C, new complex curcummoids from Zinsiber cassumunar. J. of Agricultural and food Chem. 42, 1850-1856 (1994) https://doi.org/10.1021/jf00045a004
  7. Masuda, T., J. Isobe, A. Jitoe and N. Nakatani. Antioxidative curcuminoids from rhizome of Curcuma xanthorrhiw. Phytochemistry. 31, 3645-3647 (1992) https://doi.org/10.1016/0031-9422(92)83748-N
  8. Nor Hadiani, I., A.M., Ali, N. Aimi, M. Kitajiima, H. Takayama and N.H. Lajis. Anthraquinones from Morinda elliptica. Photochemistry. 45(8), 1723-1725 (1997) https://doi.org/10.1016/S0031-9422(97)00252-5
  9. Ottolenehi, A. Interaction of Ascorbic Acid and Mitochondhal Llipids. Arch. Biochem. Biophys. 79, 355 (1959) https://doi.org/10.1016/0003-9861(59)90414-X
  10. Weir, J.R., B.A. Patel and R.F. Heck, Palladiumcatalyzed Tnethylammonium Formate Reductions. 4. Reduction of Acetylenes to Cis Monoenes and Hydrogenolysis of Tertiary Allylic Amines. J. Org. Chem. 45, 4926-4931 (1980) https://doi.org/10.1021/jo01312a021
  11. Zhans, X., B.W. Fox and J.A. Hadfield (1996) Preparation ofNaturally Occurring Anthraquinones. Synthetic Commun. 26(1), 49-62 https://doi.org/10.1080/00397919608003861