Herbal Medicines Are Activated by Intestinal Microflora

  • Kim, Dong (College of Pharmacy, Kyung Hee University)
  • Published : 2002.06.01

Abstract

Glycosides of herbal medicines, such as glycyrrhizin, ginsenosides, kalopanaxsaponins, rutin and ponicirin, were studied regarding their metabolic fates and pharmacological actions in relation to intestinal bacteria using germ-free, gnotobiotic and conventional animals. When glycyrrhizin (GL) was orally administered, $18{\beta}-glycyrrhetinic\;acid\;(GA)$, not GL, was detected in plasma and intestinal contents of gnotobiotic and conventional rats. However, GA could not be detected in germ-free rats. When GL was incubated with human intestinal bacteria, it was directly metabolized to GA (>95%) or via $18{\beta}-glycyrrhetinic\;acid-3-{\beta}-D-glucuronide$(>5%). Orally administered GL was effective in gnotobiotic and conventional rats for liver injury induced by carbon tetrachloride, but was not effective in germ-free rats. When ginseng saponins were orally administered to human beings, compound K in the plasma was detected, but the other protopanxadiol saponins were not detected. The compound K was active for tumor metastasis and allergy. When kalopanaxsaponins were incubated with human intestinal microflora, they were metabolized to kalopanaxsaponin A, kalopanaxsaponin I and hederagenin. These metabolites were active for rheumatoid arthritis and diabetic mellitus while the other kalopanxsaponins were not. When flavonoid glycosides were orally administered to animals, aglycones and/or phenolic acids were detected in the urine. The metabolic pathways proceeded by intestinal bacteria rather than by liver or blood enzymes. These metabolites, aglycones and phenolic acids, showed antitumor, antiinflammatory and antiplatelet aggregation activities. These findings suggest that glycosides of herbal medicines are prodrugs.

Keywords

References

  1. Abe K., Nakada Y, Suzuki A. and Yumioka E. Biliary metabolites of hesperetin in rats. Shoyakugaku Zasshi, 47, 43-46 (1993)
  2. Abe N., Ebina T. and Ishida N. Interferon inducdon by glycyrrhizin and glycyrretinic acid in mice. Microbiol Immunol., 26, 535-539 (1982) https://doi.org/10.1111/j.1348-0421.1982.tb00207.x
  3. Akao T., Akao T. and Kobashi K. Glycyrrhizm \beta-D-$glucuronidase of Eubacterium sp. from human intestinal flora. Chem. Pharm. Bull 35, 705-710 (1987) https://doi.org/10.1248/cpb.35.705
  4. Akao T., Akao T., Hatdon M., Kanaoka M., Yamamoto K., Namba T. and Kobashi K., Hydrolysis of glycyrrhizn to 18-g1ycyrrhety1 monoglucuronide by lysosomal $beta-D-$glucuronidase of animal livers. Biochem. Pharmacol, 41, 1025-1029 (1991) https://doi.org/10.1016/0006-2952(91)90210-V
  5. Akao T., Kida H., Kanaoka M., Hattori M. and Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral adrninistration of ginsenoside Rbl from Panax ginseng. J. Pharm. Pharmacol., 50,1155-1160(1998) https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  6. Bae E.-A., Han M. J., Choo M.-K., Park S.-Y. and Kim D.-H. Metabolism of 20(5)- and 20CR)-ginsenoside Rg3 by human intestinal bacteria and its reladon to in vitro biological acdvides. Biol. Pharm. Bull., 24,58-63 (2002)
  7. Bae E.-A., Park S.-Y., and Kim D.-H., Constitudve b-glucosidases hydrolyzing ginsenoside Rbl and Rb2 from human intestinal bacteria. Biot. Pharm. Bull 23, 1481-1485 (2000) https://doi.org/10.1248/bpb.23.1481
  8. Bae E. A., Choo M. K., Park E. K., Park S. Y, Shinn H. Y. and Kim D. H. Metabolism of gmsenoside Rc by human intesdnal bacteiia and its related antiallergic activity. In press
  9. Baek N. I., Kim D. S., Lee Y. H., Park J. D., Lee C. B. and Kim S. I. Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng, Planta Medica, Volume 62, Issue 1, February 1996, Paees 86-87 Arch. Pharm. Res., 18, 164-168 (1995) https://doi.org/10.1007/BF02979189
  10. Bjeldans L. N. and Chang G. W. Mutagenic acdvity of quercetin and related compoungs. Science, 197, 577-578 (1997)
  11. Bokkenheuser V. D., Shackleton H. L. and Winter J. Hydrolysis of dietary Qavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J., 248, 953-957 (1987) https://doi.org/10.1042/bj2480953
  12. Booth A. N., Jones F. T. and DeEds P. Metabolic fate of hespendin, eriodictyol, homoeriodictyol and diosmin. J. Biochem. Chem., 230, 661-668 (1958)
  13. Booth A. N., Murry C. W., Jones F. T. and DeEds F. Metabolic fate of rutin and quercetin in the animal body. J. Biot. Chem., 223, 252-257 (1956)
  14. Brown J. P. A Review of the genetis effects of naturally occurring flavonoids, anthraquinones and related compounds, Mutat. Res., 75, 243-277 (1980) https://doi.org/10.1016/0165-1110(80)90029-9
  15. Cheng K. J., Krishnamurty H. G., Jones G. A. and Simpson F. J. Identificadon of products produced by the anaerobic degradadon of nanngin by Butyrivibrio sp. C3. Can. J. Micmbiol., 17, 129-131 (1971)
  16. Conn J.W., Rovner D.R. and Cohen E.L. Licorice induced pseudoaldosteronism, hypertentsion, hypolalemia, aldosteronopenia and supressed plasma renin acdvity. J. Am. Med. Ass., 205, 80-84 (1968)
  17. Das N. P. Studies on flavonoid metabolism. Degradation of (+)-catechin by rat mtestinal contents. Biochim. Biophys. Acta, 177,668-670 (1969)
  18. Finney R. S. H. and Somers G. F. The and-inflammatory activity of glycyrretimc acid and derivadves. J. Pharm. Pharmacol 10,613-620 (1958) https://doi.org/10.1111/j.2042-7158.1958.tb10349.x
  19. Fujita H., Sakurai T. and Toyoshima S. Studies on the regulation by drugs against expehmental hepatitis (1) The therapeudcal effects of glycyrrhizinic acid, DL-methionine, their complex and tablets against acute injuly induced by carbon tetrachloride or D-galactosamine. Oyo Yakuri, 16,637-645 (1978) (m japanese)
  20. Ghffth L. A. and Barrow A. Metabolism of compounds in germ-free rats. Biochem. J., 130, 1161 (1972)
  21. Griffith L.A. and Smith G.E. Metabolism of myricetin and related compounds in the rat metabolite formadon in vivo and by the intestinal microflora in vitro. Biochem. J., 130, 141-151 (1972) https://doi.org/10.1042/bj1300141
  22. Griffiths L. A. and Smith G. E. Metabolism of apigenin and related compounds in the rats. Biochem. J., 128, 901-911 (1972) https://doi.org/10.1042/bj1280901
  23. Griffths L. A. Studies on metabolism of flavonoids. Biochem. J.,92, 173-175 (1964) https://doi.org/10.1042/bj0920173
  24. Han B. H., Park M. H., Han, Y. N., Woo W. S., Sankawa U., Yahara S., and Tanaka O., Degradadon of ginseng saponins under mild acidic condidons. Planta Med., 44, 146-149 (1982) https://doi.org/10.1055/s-2007-971425
  25. Hasegawa H., Sung J.-H., Matsumiya, S. and Uchiyama M., Main gmseng saponin metabolites formed by intestinal bacteria. Ptanta Med., 62, 453-457 (1996) https://doi.org/10.1055/s-2006-957938
  26. Hasegawa H., Sung J. W. and Benno Y. Role of human intestinal Prevotella oris m hydrolyzing ginseng saponins. Planta Med., 63, 436-440 (1997) https://doi.org/10.1055/s-2006-957729
  27. Hattori M., Sakamoto, T., Kobashi K., and Namba T. Metabolism of glycrrhizin by human intestinal bacteria. Ptanta Med., 48, 38-42 (1983) https://doi.org/10.1055/s-2007-969875
  28. Kaku T. and Kawashima Y. Isolation and charactehzadon of gmsenoside-Rg2, 20R-prosapogenin, 20(S)-prosapogenin and delta 20(R)-prosapogenm. Chemical studies on sapomns of Panax ginseng C. A. Meyer. Arzneim. Forsch. Drus Res., 30, 936-940 (1980)
  29. Kanaoka M., Akao T. and Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rbl by intestinal bacteria, in rat plasma after oral administration-measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull., 21, 245-249 (1998) https://doi.org/10.1248/bpb.21.245
  30. Kaneoka, M., Akao T. and Kobashi K. Metabolism of ginseng sapomns, gmsenosides, by human intesdnal bacteria. J. Tradit. Med., 11, 241-245 (1998)
  31. Karikura M., Miyase T., Tanizawa H., Taniyama T. and Takino Y. Studies on absorpdon, distribution, excretion and metabolism of ginseng sapomns. VI. The decomposition products of gmsenoside Rb2 in the stomach of rats. Chem. Pharm. Bull., 39, 400-404 (1991) https://doi.org/10.1248/cpb.39.400
  32. Kariloira M., Miyaze T., Tanizawa H., Taniyama T. and Takino Y. Studies on absorption, distribution, excredon and metabolism of ginseng saponins. VII. Compahson of the decomposition modes of ginsenoside-Rbl and -Rb2 in the digestive tract of rats. Chem. Pharm. Bull., 38, 2357-2361 (1991)
  33. Kim D.-H., Jang I.-S., Kim N.-J. and Youn W.-K. Metabolism of poncihn and narmgin by human intestinal bacteha. Yakhak Hoeji, 38, 286-292 (1994)
  34. Kim D.-H., Yu K.W., Bae E.A., Park H.J. and Choi J.W. Metabolism of kalopanaxsaponin B an H by human intestinal bacteria and anddiabetic activity of their metabolites. Biol. Pharm. Bull, 21, 360-365 (1998) https://doi.org/10.1248/bpb.21.360
  35. Kim D. H., Bae E. A., Han M. J., Park H. J., and Choi J. W. Metabolism of kalopanaxsaponi K by human intestinal bacteria and antirheumatoid arthrids acdvity of their metabolites. Biol.Pharm. Bull., 25, 68-71 (2002) https://doi.org/10.1248/bpb.25.68
  36. Kim D. H., Han S. B., Bae E. A. and Han M. J. Intestinal bacterial metabolism of rutin and its relation to mutagenesis. Arch. Pharm. Res., 19, 41-45 (1996) https://doi.org/10.1007/BF02976818
  37. Kim D. H., Hong S. W., Kim B. T., Bae E. A., Park H. Y. Han M. J. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological acdvities. Arch. Pharm. Res., 23, 172-177 (2000) https://doi.org/10.1007/BF02975509
  38. Kim D. H., Jang I. S., Kim N. J. and Youn W. K. Metabolism of poncirin and naringin by human intestinal bacteria. Yakhak Hoeji, 38, 286-292 (1994)
  39. Kim D. H., Jang I. S., Lee H. K. Jung E. A. and Lee K. Y. Metabolism of glycyrrhizin and baicalin by human intestinal bacteria. Arch. Pharm. Res., 19, 292-296 (1996) https://doi.org/10.1007/BF02976243
  40. Kim D. H., Jang I. S. and Lee S. W. Bacteorides J-37, a human intestinal bacterium, Produces glucuronidase. Biol. Pharm. Bull., 20, 834-837 (1997) https://doi.org/10.1248/bpb.20.834
  41. Kim D. H., Jung E. A., Sohng I. S., Han J. A., Kim T. H. and Han M. J. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch, Pharm. Res., 21, 17-23 (1998) https://doi.org/10.1007/BF03216747
  42. Kim D. H., Lee S. W. and Han M. J. Biotransformation of glycyrrhizin to 18B-g1ycyrrhetinic acid $3-O-\beta-D-$glucuronide by Streptococcus LJ-22, a human intestmal bacterium. Biol. Pharm. Bull., 22, 320-322 (1999) https://doi.org/10.1248/bpb.22.320
  43. Kim D. W., Bang K. H., Rhee Y. H., Lee K. T, and Park H. J. Growth inhibitory acdvides of kalopanaxsaponins A and I against human pathogenic fungi. Arch. Pharm. Res., 21, 688-91 (1998) https://doi.org/10.1007/BF02976758
  44. Kobashi K. and Akao T. Relation of intestinal bacteria to phannacological effects of glycosides. Bifidobacteria Micmflora, 16, 1-7 (1997)
  45. Krishnamurty H. G., Cheng K. J., Simpson F. J. and Watkin J. E. Identification of products produced by the anaerobic degradation of rutin and related flavonoids by Butyrivibrio. C3. Can. J. Microbiol., 16, 759-767 (1970)
  46. Kumagai A., yano S., Otome M. and Takeuchi K. Study on the corticoid-like action of glycyrrhizinic and the mechanism of its action. Endocrinol Jpn., 4, 12-27 (1957) https://doi.org/10.1507/endocrj1954.4.12
  47. Kwon S. W., Han S. B., Park I. H., Kim J. M., Park M. K. and Park J. H. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatogr., 921, 335-339 (2001) https://doi.org/10.1016/S0021-9673(01)00869-X
  48. Lee K. T., Sohn I. C., Park H. J., Kim D. W., Jung K. O. and Park K. Y. Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus. Planta Med., 66, 329-332 (2000) https://doi.org/10.1055/s-2000-8539
  49. Lee M. and Hahn D. R. Triterpenoidal saponins from the leaves of Kalopanax pictum var. chinense. Arch. Pharm. Res., 14, 124-128 (1991) https://doi.org/10.1007/BF02892016
  50. Lee S.J., Sung J. H., Lee S. J., Moon C. K. and Lee B. H. Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett., 144, 39-43 (1999) https://doi.org/10.1016/S0304-3835(99)00188-3
  51. MacGregor J. R. Mutagenicity studies of flavonols in vivo and in vitro. Toxic. Appl. Pharm., 48, A47 (1979)
  52. Mochizuki M., Yoo Y. C., Matsuzawa K., Sato K., Saiki I., Tono-oka S., Samukawa K. and Azuma I.1nhibitory effect of tumor metastasis in mice by saponins, ginsenoside-RbZ, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol. Pharm. Bull., 18, 1197-1202(1995) https://doi.org/10.1248/bpb.18.1197
  53. Nakagawa Y, Shetler M. R. and Wender S. H. Uiinary products from quercetin in neomycin-treated rats. Biochim. Biophys. Acta, 97, 233-241 (1965) https://doi.org/10.1016/0304-4165(65)90087-5
  54. Nakano N- Kano H., Suzuki H., Nakano N., Yano S. and Kanako M. Enzyme immunoassay of glycyrrhedc acid and glycyrrhizin2. Measurement of plasma glycyrrhetic acid and glycyrrhizin Jpn. Pharmacol. Ther., 8, 4171-4174 (1980) (injapanese)
  55. Pamukcu A. M. Quercetin, a rat intestinal and bladder carcinogen present in Bracken Fern. Cancer Res., 40, 3468-3472 (1980)
  56. Park H. J., Kim D. H., Choi J. W., Park J. H., and Han Y. N., A potent anti-diabetic agent from Kalopanax pitus. Arch. Pharm. Res., 21, 24-29 (1998) https://doi.org/10.1007/BF03216748
  57. Park H. J., Kwon S. K., Lee J. H., Lee K. K., Miyamoto K., and Lee K. T., Kalopanaxsaponin A is a basic saponin structure for the antitumor activity of hederagenin monodesmosides. Planta Med.,67, 118-121 (2001) https://doi.org/10.1055/s-2001-11516
  58. Park H. J., Lee K. T., Jung W. T., Choi J. W., and Kadota S., Protective effects of syringin isolated from Kalopanax pictus on galactosamine induced hepatotoxicity. Nat. Med., 53, 113-117(1999)
  59. Petrakis P. L., Kallianos A. G.. Wender S. H. and Sheltar M. R. Metabolic stidies of quercitin labled with $^{14}C$. Arch. Biochem. Biophys., 85, 264-271 (1959) https://doi.org/10.1016/0003-9861(59)90469-2
  60. Pietta P. and Marui P. Improved high performance liquid chromagraphic method for the analysis of ginsenosides in Panax ginseng extracts and products. J. Chromatogr., 356, 212-219 (1986) https://doi.org/10.1016/S0021-9673(00)91482-1
  61. Pompeo R., Flore O., Marccialis M. A., Pani A.,and Loddo B. Glycyrrhizic acid inhibits virus growth and inacdvates virus partices. Nature, 281, 689-690 (1979) https://doi.org/10.1038/281689a0
  62. Sano K., Sanada S., Ida, Y. and Shoji J. Studies on the constituents of the stem bark of Katopanax pictus. Chem. Pharm. Bull., 39, 865-870 (1991) https://doi.org/10.1248/cpb.39.865
  63. Sato K., Mochizuki M., Saiki I., Yoo Y. C. Samukawa K. and Azuma I.Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biot. Pharm. Bull., 17, 635-639 (1994) https://doi.org/10.1248/bpb.17.635
  64. Shao C. J., Kasai R., Xu J. D. and Tanaka O. Saponms from roots of Kahpanax septemlobus (Thunb.) Koidz., Ciqiu: Structures of kalopanaxsaponins C, D, E and F. Chem. Pharm. Bull., 37, 311-314(1989) https://doi.org/10.1248/cpb.37.311
  65. Shim S. B., Kim N. J. and Kim D. H. $\beta-$Glucuromdase inhibitory activity and hepatoprotecdve effect of 18-g1ycyrrhetimc acid from the rhizomes of Glycyrrhiza uralensis. Ptanta Med., 65, 40-43 (2000)
  66. Stoewsand G. S., Anderson J. L., Boyd J. N. and Harzdine G. Ouercetin: A Mutagen not a carcinogen in fischer rats. J. Toxic. Environ. Health. 14, 105-114 (1984) https://doi.org/10.1080/15287398409530565
  67. Tamura G., Gold C., Ferro-Luzzi A. and Ames B. N. Fecalase-A model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sci. in USA, 77, 4981-4965 (1980)
  68. Tangri K.K., Seth P. K., Parmar S. S. and Bhargava K. P. Biochemical study of anti-inflammatory and antiarthhdc properties ofglycynedc acid. Biochem. Pharmacol., 14, 1277-1281 (1965) https://doi.org/10.1016/0006-2952(65)90305-9
  69. Wakabayashi C., Hasegawa H., Murata J. and Saiki I. In vivo antimetastatic action of emsene protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Onwl. Res., 9, 411-417 (1998)
  70. Wu J. Y, Gardner B. H., Murphy C. I., Seals J. R., Kensil C. R., Recchia J., Beltz G. A., Newman G. W. and Newman M. J. Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HFV-l vaccine. J. Immunol., 148, 1519-1525 (1992)
  71. Youn W. K., Kim D. H., Kim N. J. and Hong N. D. Biological active components of fruits of Poncirus trifoliata. Yakhak Hoeji, 36, 548-555 (1992)