Neuroprotective Effect of 8-OH-DPAT on Long-term Sequelae from Prenatal Ischemia in Rats

  • Lee, Se-Oul (Department of Pharmacology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Zhang, Tie-Yuan (Department of Pharmacology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Kim, Gun-Tae (Department of Pharmacology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Kim, Hee-Soo (Department of Diagnostic Radiology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Lee, Jong-Doo (Department of Diagnostic Radiology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Jahng, Jeong-Won (Department of Pharmacology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Kim, Dong-Goo (Department of Pharmacology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine)
  • Published : 2002.12.21

Abstract

The role of 5-hydroxytryptamine $(5-HT)_1A$ receptor activity in prenatal ischemia was studied, by injecting 8-hydroxy-dipropylaminotetraline (8-OH-DPAT; $50{\mu}g/kg,$ s.c.), a $5-HT_1A$ agonist on gestation day 17, and 30 min later inducing transient ischemia by ligating the uterine vessels for 30 min. On postnatal day 95, rats that had experienced prenatal ischemia showed impaired motor coordination and reduced concentration of 5-HT in the cerebellum compared with Sham-operated controls. In addition, they showed increased $5-HT_1A$ receptor densities in the cerebral cortex. Pretreatment with 8-OH-DPAT ameliorated the behavioral and neurochemical sequelae measured in the present study. The results suggest that $5-HT_1A$ receptors protect the brain from ischemic insult and/or facilitate recovery after prenatally experienced ischemia.

Keywords

References

  1. Ahlemeyer B, Beier H, Semkova I, Achaper C, Krieglstein J. S-100beta protects cultured neurons against glutamate- and staurosporine-induced damage and is involved in the antiapoptotic action of the 5-HT (1A)-receptor agonist, Bay ${\times}$ 3702. Brain Res 858: 121-128, 2000 https://doi.org/10.1016/S0006-8993(99)02438-5
  2. Akbary HM, Whitaker-Azmitia PM, Azmitia EC. Prenatal cocaine decreases the trophic factor S-100 $\beta$ and induced microcephaly: reversal by postnatal 5-HT$_{1A}$ receptor agonist. Neurosci Lett 170: 141-144, 1994 https://doi.org/10.1016/0304-3940(94)90259-3
  3. Bickler PE, Gallego SM, Hansen BM. Developmental changes in intracellular calcium in rat cerebral cortex during hypoxia. J Cereb Blood Flow Metab 13: 811-819, 1993 https://doi.org/10.1038/jcbfm.1993.103
  4. Bielenberg GW, Burkhardt M. 5-hydroxytryptamine 1A agonists. A new therapeutic principle for stroke treatment. Stroke 21(12 Suppl 1): IV161-163, 1990
  5. Binienda Z, Fogle CM, Slikker W Jr, Ali SF. Acute effects of perinatal hypoxic insult on concentrations of dopamine, serotonin, and metabolites in fetal monkey brain. Int J Dev Neurosci 12: 127-131, 1994 https://doi.org/10.1016/0736-5748(94)90005-1
  6. Bode-Greuel KM, Klisch J, Horvath E, Glaser T, Traber J. Effects of 5-hydroxytryptamine 1A-receptor agonists on hippocampal damage after transient forebrain ischemia in the Mongolian Gerbil. Stroke 21 (12 Suppl 1): IV164-166, 1990
  7. Boksa P, Krishnamurthy A, Brooks W. Effects of a period of asphyxia during birth on spatial learning in the rat. Pediatr Res 37: 489-496, 1995 https://doi.org/10.1203/00006450-199504000-00018
  8. Cabrera-Vera TM, Garcia F, Pinto W, Battaglia G. Neurochemical changes in brain serotonin neurons in immature and adult offspring prenatally exposed to cocaine. Brain Res 870: 1-9, 2000 https://doi.org/10.1016/S0006-8993(00)02382-9
  9. Colino A, Halliwell JV. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328: 73-77, 1987 https://doi.org/10.1038/328073a0
  10. Duffy TE, Kohle SJ, Vannucci RC. Carbohydrate and energy metabolism in perinatal rat brain: Relation to survival in anoxia. J Neurochem 24: 271-276, 1975 https://doi.org/10.1111/j.1471-4159.1975.tb11875.x
  11. El-Mallakh RS, Peters C, Waltrip C. Antidepressant treatment and neural plasticity. J Child Adolesc Psychopharmacol 10: 287-294 2000 https://doi.org/10.1089/cap.2000.10.287
  12. Hughes JA, Sparber SB. d-Amphetamine unmasks postnatal consequences of exposure to methylmercury in utero: methods for studying behavioral teratogenesis. Pharmacol Biochem Behav 8: 365-375, 1978 https://doi.org/10.1016/0091-3057(78)90072-2
  13. Ishimaru H, Ikarashi Y, Takahashi A, Maruyama Y. Acute neurochemical changes in mouse brain following cerebral ischemia. Eur Neuropsychopharmacol 3: 485-391, 1993 https://doi.org/10.1016/0924-977X(93)90273-O
  14. Lauder JM, Krebs H. Serotonin as a differentiation signal in early neurogenesis. Dev Neurosci 1: 15-30, 1978 https://doi.org/10.1159/000112549
  15. Le Marec N, Hebert C, Amdiss F, Botez MI, Reader TA. Regional distribution of 5-HT transporters in the brain of wild type and 'Purkinje cell degeneration' mutant mice: a quantitative autoradiographic study with [3H]citalopram. J Chem Neuroanat 15: 155-171, 1998 https://doi.org/10.1016/S0891-0618(98)00041-6
  16. Mauler F, Fahrig T, Horváth E, Jork R. Inhibition of evoked glutamate release by the neuroprotective 5-HT1A receptor agonist BAY ${\times}$3702 in vitro and in vivo. Brain Res 888: 150-157, 2001 https://doi.org/10.1016/S0006-8993(00)03074-2
  17. Netzeband JG, Weathers LB, Strahlendorf HK, Strahlendorf JC. Serotonin depresses excitatory amino acid-induced excitation of cerebellar Purkinje cells in the adult rat in vivo. Brain Res 608: 145-149, 1993 https://doi.org/10.1016/0006-8993(93)90786-M
  18. Piera MJ, Beaughard M, Michelin MT, Massingham R. Effects of 5-hydroxytryptamine 1A receptor agonists, 8-OH-DPAT, buspirone and flesinoxan, upon brain damage induced by transient global cerebral ischemia in gerbils. Archives Internationale de Pharmacodynamie et de Therapie 329: 347-359, 1995
  19. Prehn JH, Welsch M, Backhau $\beta$ C, Nuglisch J, Ausmeier F, Karkoutly C, Krieglstein J. Effects of serotonergic drugs in experimental brain ischemia: evidence for a protective role of serotonin in cerebral ischemia. Brain Res 630: 10-20, 1993 https://doi.org/10.1016/0006-8993(93)90636-2
  20. Ramos AJ, Tagliaferro P, Lopez EM, Pecci Saavedra J, Brusco A. Neuroglial interactions in a model of para-chlorophenylalanineinduced serotonin depletion. Brain Res 883: 1-14, 2000 https://doi.org/10.1016/S0006-8993(00)02924-3
  21. Schurr A, Rigor BM. The mechanism of neuronal resistance and adaptation to hypoxia. FEBS Lett 224: 4-8, 1987 https://doi.org/10.1016/0014-5793(87)80411-8
  22. Strazielle C, Lalonde R, Riopel L, Botez MI, Reader TA. Regional distribution of the 5-HT innervation in the brain of normal and lurcher mice as revealed by [3H]citalopram quantitative autoradiography. J Chem Neuroanat 10: 157-171, 1996 https://doi.org/10.1016/0891-0618(96)00115-9
  23. Whitaker-Azmitia PM. Serotonin and brain development: Role in human developmental diseases. Brain Res Bull 56: 479-485, 2001 https://doi.org/10.1016/S0361-9230(01)00615-3
  24. Wiernsperger N. Serotonin 5-HT2 receptors and brain circulation. J Cardiovasc Pharmacol 16 (Suppl 3): S20-S24, 1990 https://doi.org/10.1097/00005344-199006162-00007
  25. Wiggleworth JS. Experimental growth retardation in foetal rat. J Pathol Bacteriol 88: 1-13, 1964 https://doi.org/10.1002/path.1700880102