Increase of Intracellular $Ca^{2+}$ Concentration Induced by Lysophosphatidylcholine in Murine Aortic Endothelial Cells

  • Zhu, Mei-Hong (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Park, Sung-Jin (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Kim, Hyun-Jin (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Yang, Dong-Ki (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Suh, Suk-Hyo (Department of Physiology, School of Medicine, Ewha Womans University) ;
  • So, In-Suk (Department of Physiology and Biophysics, Seoul National University College of Medicine) ;
  • Kim, Ki-Whan (Department of Physiology and Biophysics, Seoul National University College of Medicine)
  • Published : 2002.04.21

Abstract

Effects of oxidized low-density lipoprotein (ox-LDL), $1-{\alpha}-stearoyl-lysophosphatidylcholine$ (LPC), on intracellular $Ca^{2+}$ concentration were examined in mouse endothelial cells by measuring intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ with fura 2-AM and reverse transcription-polymerase chain reaction (RT-PCR). LPC increased $[Ca^{2+}]_i$ under the condition of 1.5 mM $[Ca^{2+}]_o$ but did not show any effect under the nominally $Ca^{2+}-free$ condition. Even after the store depletion with $30{\mu}M$ 2,5-di-tert- butylhydroquinone (BHQ) or $30{\mu}M$ ATP, LPC could still increase the $[Ca^{2+}]_i$ under the condition of 1.5 mM $[Ca^{2+}]_o.$ The time required to increase [$Ca{2+}$]i (about 1 minute) was longer than that for ATP-induced $[Ca^{2+}]_i$ increase $(10{\sim}30\;seconds).$ LPC-induced $[Ca^{2+}]_i$ increase was completely blocked by $1{\mu}M\;La^{3+}.$ Transient receptor potential channel(trpc) 4 mRNA was detected with RT-PCR. From these results, we suggest that LPC increased $[Ca^{2+}]_i$ via the increase of $Ca^{2+}$ influx through the $Ca^{2+}$ routes which exist in the plasma membrane.

Keywords

References

  1. Born GVR, Schwartz CJ. Vascular endothelium: Physiology, Pathology and Therapeutics, Stuttgart: Schatthauern Verlag, 1997
  2. Born G, Rabelink T, Smith T. Endothelium and cardiovascular disease. London: Science Press, 1998
  3. Carl A, Lee HK, Sanders KM. Regulation of ion channel in smooth muscle by calcium. Am J Physiol 271: C9-C34, 1996 https://doi.org/10.1152/ajpcell.1996.271.1.C9
  4. Cox DA, Cohen ML. Effects of oxidized low-density lipoproteins on vascular contraction and relaxation: clinical and pharmacological implication in atherosclerosis. Pharmacol Rev 48: 3-19, 1996
  5. Dolor RJ, Hurwitz LM, Nirza Z, Strauss HC, Whorton AR. Regulation of extracellular calcium entry in endothelial cells-Role of intracellular calcium pool. Am J Physiol 262: C171-C181, 1992 https://doi.org/10.1152/ajpcell.1992.262.1.C171
  6. Flavahan NA. Lysophosphatidylcholine modifies G protein-dependent signaling in porcine endothelial cells. Am J Physiol 264 (3 Pt 2): H722-H727, 1993
  7. Freeman JE, Kuo WY, Drenger B, Barnett TN, Levine MA, Flavahan NA. Analysis of lysophophatidylcholine-induced endothelial dysfunction. J Cardiovasc Pharmacol 28 (3): 345-352, 1996 https://doi.org/10.1097/00005344-199609000-00001
  8. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. Lack of an endothelial store-operated Ca$^2+$ current impairs agonist-dependent vasorelaxation in TRP4$^-/-$ mice. Nature Cell Biol 3: 121-127, 2001 https://doi.org/10.1038/35055019
  9. Froese DE, McMaster J, Man RY, Choy PC, Kroeger EA. Inhibition of endothelium-dependent vascular relaxation by lysophosphatidyl- choline: impact of lysophosphatidylcholine on mechanisms involving endothelium-derived nitric oxide and endothelium derived hyperpolarizing factor. Mol Cell Biochem 197 (1-2): 1-6, 1999 https://doi.org/10.1023/A:1006847929334
  10. Fukao M, Hattori Y, Knno M, Sakuma I, Kitabatake A. Evidence for selective inhibition by lysophosphatidylcholine of acetylcholine- induced endothelium-dependent hyperpolarization and relaxation in rat mesenteric artery. Br J Pharmacol 116: 1541- 1544, 1995 https://doi.org/10.1111/j.1476-5381.1995.tb16370.x
  11. Inagami T, Naruse M, Hoover R. Endothelium: As an endocrine organ. Annu Rev Physiol 157: 171-189, 1995
  12. Inoue N, Hirata K, Yamada M, Hamamori Y, Matsuda Y, Akita H, Yokoyama M. Lysophosphatidylcholine inhibits bradykinininduced phosphoinositide hydrolysis and calcium transients in cultured bovine aortic endothelial cells. Circ Res 71(6): 1410- 1421, 1992 https://doi.org/10.1161/01.RES.71.6.1410
  13. Jabr RI, Yamazaki J, Hume JR. Lysophosphatidylcholine triggers intracellular calcium release and activation of non-selective cation channels in renal arterial smooth muscle cells. Pflgers Arch 439(4): 495-500, 2000 https://doi.org/10.1007/s004240050969
  14. Kita T, Kume N, Yokode M, Ishii K, Arai H, Horiuchi H, Moriwaki H, Minami M, Kataoka H, Watatsuki Y. Oxidized-LDL and atherosclerosis. Role of LOX-1. Ann N Y Acad Sci 902: 95-100, 2000 https://doi.org/10.1111/j.1749-6632.2000.tb06304.x
  15. Kugiyama K, Murohara T, Yasue H, Kimura T, Sakaino N, Ohgushi M, Sugiyama S, Okumura K. Increased constrictor response to acetylcholine of the isolated coronary arteries from patients with variant angina. Int J Cardiol 52(3): 223-233, 1995 https://doi.org/10.1016/0167-5273(95)02478-6
  16. Magishi K, Kimura J, Kubo Y, Abiko Y. Exogenous lysophosphatidylcholine increases non-selective cation current in guineapig ventricular myocytes. Pflgers Arch 432: 345-350, 1996 https://doi.org/10.1007/s004240050142
  17. Miwa Y, Hirata K, Kawashima S, Akita H, Yokoyama M. Lysophosphatidylcholine inhibits receptor-mediated Ca$^2+$ mobilization in intact endothelial cells of rabbit aorta. Arterioscler Thromb Vasc Biol 17(8): 1561-1567, 1994
  18. Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Ohta Y, Yasue H. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium-dependent relaxation. Am J Physiol 267(6 Pt 2): H2441-H2449, 1994
  19. Nilius B. Permeation properties of a non-selective cation channel in human vascular endothelial cells. Pflgers Arch 416: 609-611, 1990 https://doi.org/10.1007/BF00382697
  20. Nilius B. Regulation of transmembrane calcium fluxes in endothelium. News Physiol Sci 6: 110-114, 1991
  21. Nilius B, Viana F, Droogmanns G. Ion channels in vascular endothelium. Annu Rev Physiol 59: 145-170, 1997 https://doi.org/10.1146/annurev.physiol.59.1.145
  22. Okajima F, Sato K, Tomura H, Kuwabara A, Nochi H, Tamoto K, Kondo Y, Tokumitsu Y, Ui M. Stimulatory and inhibitory actions of lysophosphatidylcholine, depending on its fatty acid residue, on the phospholipase C/Ca$^2+$ system in HL-60 leukaemia cells. J Biochem 336: 491-500, 1998 https://doi.org/10.1042/bj3360491
  23. Prokazova NV, Zvezdina ND, Korotaeva AA. Effect of lysophosphatidylcholine on transmembrane signal transduction. Biochemistry (Moscow) 63(1): 31-38, 1997
  24. Portman OW, Alexander M. Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis. J Lipid Res 10(2): 158- 65, 1996
  25. Revest PA, Abbott NJ. Membrane ion channels of endothelial cells. Trends Pharmacol Sci 13: 404-407, 1992 https://doi.org/10.1016/0165-6147(92)90124-O
  26. Sim JH, Yang DK, Kim YC, Park SJ, Kang TM, So I, Kim KW. ATP-sensitive K channels composed of Kir6.1 and SUR2B subunits in guinea pig gastric myocytes. Am J Physiol Gastrointest Liver Physiol 282: G137-G144, 2002 https://doi.org/10.1152/ajpgi.00057x.2002
  27. Stoll LL, Spector AA. Lysophosphatidylcholine causes cGMP-dependent verapamil-sensitive Ca$^2+$ influx in vascular smooth muscle cells. Am J Physiol 264: C885-893, 1993 https://doi.org/10.1152/ajpcell.1993.264.4.C885
  28. Suh SH, Droogmans G, Nilius B. Effect of cyanide and deoxyglucose on the Ca$^2+$ signaling in macrovascular endothelial cells. Endothelium 7(3): 155-168, 2000 https://doi.org/10.3109/10623320009165314
  29. Suh SH, Vennekens R, Manolopoulos VG, Freichel M, Schweig U, Prenen J, Flockerzi V, Droogmans G, Nilius B. Characterization of explanted endothelial cells from mouse aorta: electrophysiology and Ca$^2+$ signaling. Pflgers Arch-Eur J Physiol 438: 612-620, 1999 https://doi.org/10.1007/s004240051084