DOI QR코드

DOI QR Code

모세관 전기 영동을 이용한 퀴놀린계 항생제의 광학 이성질체 분석

Chiral Separation of Quinolone Antibacterial Agent by Capillary Electrophoresis

  • Gang, Dae Cheon (Division of Chemical Engineering, Kyungnam University) ;
  • Jo, Seung Il (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Jeong, Du Su (School of Chemistry, Seoul National University) ;
  • Choe, Gyu Seong (Division of Chemical Engineering, Kyungnam University) ;
  • Kim, Yong Seong (Division of Chemical Engineering, Kyungnam University)
  • 발행 : 2002.10.20

초록

(+)(18crown6)-tetracarboxylic acid ($18C6H_4$)를 퀴놀린계 항생제인 gemifloxacin을 모세관 전기영동법으로 키랄 분리하였다. Body fluid에서 퀴놀린계 항생제인 gemifloxacin의 직접적인 분석은 빠른 분석 시간, 다성분 분석등의 여러 가지 장점을 가진다. 그러나 Body fluid내의 높은 농도의 나트륨 이온은 $18C6H_4$와 강한 전하 상호작용으로 인하여 gemifoxacin과 $18C6H_4$의 상호작용을 방해한다. 키랄 선택제와 나트륨 이온 사이의 상호 작용을 줄이기 위해 완충 용액에 킬레이트 리간드 EDTA를 첨가하였다. 시료 용액에 150mM의 나트륨 이온이 존재 할 때에도 분리 효율의 향상과 이동 시간의 감소를 관찰 할 수 이었다.

Chiral separation of gemifloxacin, an quinolone antibacterial agent, using (+)-(18-crown-6)-tetracar-boxylic acid $(18C6H_4)$ as a chiral selector was performed by capillary electrophoresis (CE). Direct analysis of quinolone antibacterial agent in body fluid is beneficial in terms of fast analysis time, multicomponent analysis. However, high con-centration of sodium ion in body fluid can prevent gemifloxacin from interacting with $18C6H_4$ since sodium ion has high affinity with $18C6H_4$ due to the strong charge interaction. Ethylenediaminetetraacetic acid (EDTA), as a chelating ligand, was added in the running buffer in order to reduce the interaction between sodium ion and the chiral selector. Increased separation efficiency and reduced migration time were observed while sodium ion exists in the sample solution at the concentration up to 150 mM.

키워드

참고문헌

  1. Machida, Y.; Nishi, H.; Nakumura, K.; Nakai, H.; Sato,T. J. Chromatogr. A. 1998, 805, 85. https://doi.org/10.1016/S0021-9673(98)00013-2
  2. Hyun, M. H.; Jin, J. S.; Lee, W. Bull. Korea Chem. Soc.1998, 19, 819.
  3. Schurig, V. J. Chromatogr. A.1994, 666, 111. https://doi.org/10.1016/0021-9673(94)80374-9
  4. Vespalec, R.; Bocek, P. Chem. Rev. 2000, 700, 3715.
  5. Fanali, S. J. Chromatogr. A. 1997, 792, 227. https://doi.org/10.1016/S0021-9673(97)00809-1
  6. Szejtii, J. Chem. Rev. 1998, 98, 1743. https://doi.org/10.1021/cr970022c
  7. Kuhn, R. Electrophoresis 1999, 20, 2605. https://doi.org/10.1002/(SICI)1522-2683(19990901)20:13<2605::AID-ELPS2605>3.0.CO;2-M
  8. Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev.1997, 97, 3313. https://doi.org/10.1021/cr960144p
  9. Otsuka, K.; Terabe, S. J. Chromatogr. A. 2000, 875, 163. https://doi.org/10.1016/S0021-9673(99)01167-X
  10. Haginaka, J. J. Chromatogr. A. 2000, 875, 235. https://doi.org/10.1016/S0021-9673(99)01168-1
  11. Hong, C. Y.; Kim, Y. K.; Chang, J. H.; Kim, Y. Z.;Kawk, J. H. J. Med. Chem. 1997, 40, 3584. https://doi.org/10.1021/jm970202e
  12. Kuhn, R.; Wagner, J.; Walbroehl, Y.; Bereuter, T. Electrophoresis.1994, 15, 828. https://doi.org/10.1002/elps.11501501117
  13. Seiler, H.; Sigel, A.; Sigel, H. Handbook on Metals inClinical and Analytical Chemistry; Marcel Dekker:New York., 1994; p 1.
  14. Behr, J.-P.; Lehn, J.-M.; Vierling, P.; Helv. Chim. Acta.1982, 65, 1853. https://doi.org/10.1002/hlca.19820650620
  15. Stewart, C. J.; Iles, R. K.; Perrett, D. Electrophoresis.2001, 22, 1136. https://doi.org/10.1002/1522-2683()22:6<1136::AID-ELPS1136>3.0.CO;2-A
  16. Jang, j.; Cho, S. I.; Jung, H.; Chung, D. S. Electrophoresis.2001, 22, 4362. https://doi.org/10.1002/1522-2683(200112)22:20<4362::AID-ELPS4362>3.0.CO;2-8
  17. Cho, S. I.; Jung, H.; Chung, D. S. Electrophoresis. 2000,21, 3618. https://doi.org/10.1002/1522-2683(200011)21:17<3618::AID-ELPS3618>3.0.CO;2-4
  18. A. E. Martell.; R. M. Smith. Critical Stability Constants; Plenum Press: New York., 1974, 1, 204.
  19. Baker, D. R. Capillary Electrophoresis; John Wiley &Son: New York., 1995; p 44.